【正文】
data needs to be assessed in conjunction with the ability of the fire safety measures to protect occupants to provide some sort of measure of effectiveness. The effectiveness of sprinklers and smoke detectors has been estimated in a study by study found that in home fires: ??The introduction of smoke detectors will reduce death rates by 52%. If sprinkler protection was introduced after the smoke detectors, the death rate would be reduced by a further 30%, resulting a total reduction in the death rate of 82%(Hall, 1993). ??If sprinklers were introduced first the death rate would be reduced by 69%.Adding smoke detectors would reduce the death rate by a further 13%, resulting a total reduction in the death rate of 82% (Hall, 1993). ??Sprinklers do not operate properly 8% of the time and smoke detectors do not operate properly 15% of the time (Hall, 1993). ??Detectors are nonoperational 32% of the time when a fire occurs (Hall, 1993). This information of this type would be very useful in a quantitative risk assessment, however for other fire safety measures it is not readily available. In addition to this, it is difficult to assess the contribution of an individual fire safety measure to the safety of occupants. The safety of occupants is usually provided through the bination and interaction of different fire safety measures. Therefore the assessment of the contribution to life safety from individual safety measures is difficult without the consideration of these interdependencies. Another problem is that some fire safety measures provide protection indirectly. For example 18 sprinkler protection would provide direct protection, but smoke detectors will provide indirect protection. Direct protection can be defined as the fire safety measures that can directly affect the fire or products of bustion. The limited information and data available makes it difficult to assess the matrix quantitatively. A relative risk assessment of the matrix with respect to the building code would be the next logical stage, but the statistics on the effectiveness of the fire safety systems is limited. Reliability data is relatively easy to determine, but data on the ability of a fire safety measure or a bination of measures to increase life safety is difficult to determine. Some of the problems with a quantitative risk assessment are: ??Limited data ??Assessment of matrix variables Fire safety systems. Assessment of reliability and effectiveness of fire safety systems. Fire. Assessment of fire growth, spread, production of toxic products. Building characteristics. Level of safety provided by architectural characteristics, number of stairs, egress path widths, travel distances. Occupant characteristics. Assessment of occupant characteristics, human behaviour, physical and mental abilities. Training and Education. Decision making ability of occupants. Maintenance and inspections. Assess the frequency and effectiveness of maintenance program. Fire brigade intervention. Assessment of response time of fire brigade and time to extinguish or control the fire. ??Assessment of interdependencies and interrelationships between matrix variables. For example, the fire size is related to the ability of sprinklers to control the fire. ??Changes to the risk to life safety during a fire. Occupant behaviour, occupant location, occupant characteristics, fire characteristics, fire safety measures and fire brigade intervention can all change as the situation evolves. Therefore the level of risk faced by occupants also changes. To avoid the inherent difficulties in quantitative risk assessment, the fire safety design matrix is based on providing multiple levels of protection for the occupants. Therefore, if one of the fire safety measures fails, there is at least one other mechanism to provide protection. In addition to this, fire safety training is essential to educate occupants on what to do in the event of a fire, and 19 how to maximise their chances of survival. 中文譯文: 第十三章 防火安全矩陣 防火安全矩陣 以 為公寓 防 火工程設(shè)計(jì)提供指南 為 宗旨。矩陣 僅僅作 為 能 指 導(dǎo)和 適當(dāng)?shù)睾藢?shí)合格防火安全工程的最后設(shè)計(jì)。 不 考慮 建筑物和居住者特征 , 一些最小的防火安全措施 應(yīng)該 被實(shí)施在所有公寓。 緊急戰(zhàn)略 緊急戰(zhàn)略的簡(jiǎn)要的描述或緊急辦法 在下面的情況下的 矩陣中被使用 。 2 非撤離 在的 居住者撤離建筑物。 3 分批 撤離 居住 在 火災(zāi)發(fā)生的房間的和火災(zāi)層的人員 首先撤離。 立即撤離那些在起火層之上的居住者 。 消防隊(duì)干預(yù)可能 改變 撤離 順序 , 或制止撤離以回應(yīng)當(dāng)前情況或任何改變。 悶燃的火 公寓火 公開(kāi)區(qū)域火 撤離 在公寓起火 1 在公寓起火 2 在地板上起火 3 起火層之上須撤離的居住者 1 在地板上起火 2 起火層之上 須撤離的居住者 20 非撤離 在公寓起火 在公寓起火 在 地板上起火 分 批 撤離 在公寓起火 1 在公寓起火 2 在地板上起火 3 起火層之上須撤離的居住者 1 在地板上起火 2 起火層之上須撤離的居住者 矩陣可變 性 公寓防火安全設(shè)計(jì)包括許多 可變量 和相互依賴(lài)性。 防火安全 措施 的選擇 在許多情況下 是有很多 中 的 。 這些交易和相互聯(lián)系在防火安全措施之間需要被認(rèn)為獲得多數(shù)高效率和有效的防火安全設(shè)計(jì)。 表 14 矩陣 可變量 可變量 次級(jí) 可變量 評(píng)論 建筑物和 出 口 特征 1 建筑物特征 建筑物高度 多居 民 或 多用途 房屋面積 公寓 數(shù)量 安全 防護(hù) 2 出 口 特征 臺(tái)階的數(shù) 目 緊急 電梯 被保護(hù)的道路 逃出距離 出口 寬度 應(yīng)急照明和標(biāo)志 通常建筑管理,強(qiáng)制保護(hù) 。 打開(kāi)所有通往逃生路線(xiàn)的門(mén),門(mén)應(yīng)能自動(dòng)關(guān)閉 。 避難所地區(qū)應(yīng)該提供 給殘疾 人 或他們 被 指示保留在他們公寓。 防火安全系統(tǒng) 1 偵查 煙檢測(cè)器 熱探測(cè)器 模式可尋址的系統(tǒng) 中心 探測(cè)器 /手工電話(huà)點(diǎn) 2 警報(bào) 發(fā)聲器 緊急警告和相互 交流 系統(tǒng) (EWIS) 與消防隊(duì)的 聯(lián)系 火顯示盤(pán)區(qū) 仿造盤(pán)區(qū) 3 滅火 噴水 保護(hù)裝置 滅火器 滅火水龍帶卷軸 消 火栓 煙檢測(cè)器應(yīng)該被提供在所有公寓。 報(bào)警系統(tǒng) 如果在公寓內(nèi)將是更有效。 噴水 保護(hù)裝置 提供最高水平 的 物產(chǎn)和生活安全保護(hù)滅火器和 建筑條例要求滅火水龍帶卷軸 應(yīng) 22 4 煙控制 將煙抽走 關(guān)閉 HVAC 分區(qū) 密封 分區(qū)煙控制 該 被提供 。 密封 系統(tǒng)不應(yīng)該激活在火的偵查在區(qū)域是被 密封 的區(qū)域 。 緊急辦法 撤離 非撤離 分批 撤離 檢查和維護(hù) 檢修頻率 逃命道路維護(hù)和 遠(yuǎn)離 可燃燒物 按 相關(guān)標(biāo)準(zhǔn)和建 筑條例進(jìn)行維護(hù) 訓(xùn)練和教育 消防演習(xí)頻率 防火安全簡(jiǎn)報(bào) 小冊(cè)子和文 章 用舞臺(tái)煙霧 模仿現(xiàn)實(shí)情況 防火安全訓(xùn)練和緊急狀態(tài)計(jì)劃訓(xùn)練 建筑物 負(fù)責(zé)人 居住者特征 年齡 心理上和體質(zhì)上的特點(diǎn) /易變性 教育 文化背景 消防隊(duì)干預(yù) 警報(bào)時(shí)間 (連接到消防隊(duì) )時(shí)刻 到達(dá)公寓時(shí)刻 設(shè)定和 穿越樓層 時(shí)刻與起火 /搜尋 和搶救戰(zhàn)斗 與居住者的通信 23 可利用水 火 內(nèi)部火傳播 外在火傳播 火增長(zhǎng)率 火發(fā)展階段 火大小 圍墻影響 內(nèi)部火傳播包括襯里 和可燃燒的材料。 高于 25 米的建筑 高于 25 米的建筑的 防火安全矩陣 在 表 15 中 介紹 。此 矩陣提供 了 一 些 簡(jiǎn)單的方法 以 確定一些公寓防火安全 的最低 要求。被推薦的防火安全方案 的理由 將 中 講述