freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

八年級(jí)數(shù)學(xué)試卷易錯(cuò)易錯(cuò)壓軸勾股定理選擇題訓(xùn)練經(jīng)典題目(及答案)100-閱讀頁(yè)

2025-04-01 22:15本頁(yè)面
  

【正文】 只要利用勾股定理的逆定理加以判斷即可.16.C解析:C【分析】首先由勾股定理求得AB=10,然后由翻折的性質(zhì)求得BE=4,設(shè)DC=,則BD=,在△BDE中,利用勾股定理列方程求解即可.【詳解】在Rt△ABC中,由勾股定理可知:AB=,由折疊的性質(zhì)可知:DC=DE,AC=AE=6,∠DEA=∠C=90176。設(shè)DC=x,則BD=8x,DE=x,在Rt△BED中,由勾股定理得:BE2+DE2=BD2,即42+x2=(8x)2,解得:x=3,∴CD=3.故選:C.【點(diǎn)睛】本題主要考查了勾股定理與折疊問(wèn)題,熟練掌握翻折的性質(zhì)和勾股定理是解決問(wèn)題的關(guān)鍵.17.D解析:D【分析】根據(jù)直角三角形的性質(zhì)求出BC,根據(jù)勾股定理計(jì)算,得到答案.【詳解】解:∵∠C=90176?!郆C=AB=6,由勾股定理得,AC=,故選:D.【點(diǎn)睛】本題考查的是直角三角形的性質(zhì)、勾股定理,掌握在直角三角形中,30176。于是得到∠CBC′=90176。∴∠CBC′=90176。∴BC=BC′=8,根據(jù)勾股定理可得DC′=.故選:B.【點(diǎn)睛】此題考查了軸對(duì)稱﹣線路最短的問(wèn)題,確定動(dòng)點(diǎn)P為何位置時(shí) PC+PD的值最小是解題的關(guān)鍵.21.D解析:D【解析】試題解析:當(dāng)3和5都是直角邊時(shí),第三邊長(zhǎng)為:=;當(dāng)5是斜邊長(zhǎng)時(shí),第三邊長(zhǎng)為:=4.故選D.22.A解析:A【解析】分析:直接利用勾股定理的逆定理進(jìn)而結(jié)合直角三角形面積求法得出答案.詳解:∵52+122=132,∴三條邊長(zhǎng)分別為5里,12里,13里,構(gòu)成了直角三角形,∴這塊沙田面積為:550012500=7500000(平方米)=(平方千米).故選A.點(diǎn)睛:此題主要考查了勾股定理的應(yīng)用,正確得出三角形的形狀是解題關(guān)鍵.23.B解析:B【分析】由數(shù)軸上點(diǎn)表示的數(shù)為,點(diǎn)表示的數(shù)為1,得PA=2,根據(jù)勾股定理得,進(jìn)而即可得到答案.【詳解】∵數(shù)軸上點(diǎn)表示的數(shù)為,點(diǎn)表示的數(shù)為1,∴PA=2,又∵l⊥PA, ∴,∵PB=PC=,∴數(shù)軸上點(diǎn)所表示的數(shù)為:.故選B.【點(diǎn)睛】本題主要考查數(shù)軸上點(diǎn)表示的數(shù)與勾股定理,掌握數(shù)軸上兩點(diǎn)之間的距離求法,是解題的關(guān)鍵.24.B解析:B【分析】根據(jù)“在Rt△ABC中”和“沿BD進(jìn)行翻折”可知,本題考察勾股定理和翻折問(wèn)題,根據(jù)勾股定理和翻折的性質(zhì),運(yùn)用方程的方法進(jìn)行求解.【詳解】∵∠A=90176。B,則A39。B為所求,利用勾股定理可求得其值.【詳解】過(guò)A作直線a的垂線,并在此垂線上取點(diǎn)A′,使得AA′=4,連接A′B,與直線b交于點(diǎn)N,過(guò)N作直線a的垂線,交直線a于點(diǎn)M,連接AM,過(guò)點(diǎn)B作BE⊥AA′,交射線AA′于點(diǎn)E,如圖,∵AA′⊥a,MN⊥a,∴AA′∥MN.又∵AA′=MN=4,∴四邊形AA′NM是平行四邊形,∴AM=A′N.由于AM+MN+NB要最小,且MN固定為4,所以AM+NB最?。蓛牲c(diǎn)之間線段最短,可知AM+NB的最小值為A′B.∵AE=2+3+4=9,AB,∴BE.∵A′E=AE﹣AA′=9﹣4=5,∴A′B8.所以AM+NB的最小值為8.故選B.【點(diǎn)睛】本題考查了勾股定理的應(yīng)用、平行線之間的距離,解答本題的關(guān)鍵是找到點(diǎn)M、點(diǎn)N的位置,難度較大,注意掌握兩點(diǎn)之間線段最短.28.C解析:C【分析】由AP+CP=AC得到=BP+AC,即計(jì)算當(dāng)BP最小時(shí)即可,此時(shí)BP⊥AC,根據(jù)三角形面積公式求出BP即可得到答案.【詳解】∵AP+CP=AC,∴=BP+AC,∴BP⊥AC時(shí),有最小值,設(shè)AH⊥BC,∵∴BH=3,∴,∵,∴,∴BP=,∴=AC+BP=5+=,故選:C.【點(diǎn)睛】此題考查等腰三角形的三線合一的性質(zhì),勾股定理,最短路徑問(wèn)題,正確理解時(shí)點(diǎn)P的位置是解題的關(guān)鍵.29.B解析:B【分析】“趙爽弦圖”是由四個(gè)全等的直角三角形和中間的小正方形拼成的一個(gè)大正方形.【詳解】“趙爽弦圖”是由四個(gè)全等的直角三角形和中間的小正方形拼成的一個(gè)大正方形,如圖所示:故選B.【點(diǎn)睛】本題主要考查了勾股定理的證明,證明勾股定理時(shí),用幾個(gè)全等的直角三角形拼成一個(gè)規(guī)則的圖形,然后利用大圖形的面積等于幾個(gè)小圖形的面積和化簡(jiǎn)整理得到勾股定理.30.A解析:A【分析】先計(jì)算AB2=2890000,BC2=640000,AC2=2250000,可得BC2+AC2=AB2,那么△ABC是直角三角形,而直角三角形斜邊上的中線等于斜邊的一半,從而可確定P點(diǎn)的位置.【詳解】解:如圖∵AB2=2890000,BC2=640000,AC2=2250000∴BC2+AC2=AB2,∴△ABC是直角三角形,∴活動(dòng)中心P應(yīng)在斜邊AB的中點(diǎn).故選:A.【點(diǎn)睛】本題考查了勾股定理的逆定理.解題的關(guān)鍵是證明△ABC是直角三角形.
點(diǎn)擊復(fù)制文檔內(nèi)容
語(yǔ)文相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1