【摘要】:(平行法):(邊邊邊):(邊角邊):(角角):1、判斷兩三角形相似有哪些方法?2、相似三角形有什么性質?對應角相等,對應邊的比相等胡夫金字塔是埃及現(xiàn)存規(guī)模最大的金字塔,被喻為“世界古代七大奇觀之一”。塔的4個斜面正對東南西北四個方向,塔基呈正方形,每邊長約230
2025-01-24 00:14
【摘要】相似三角形對應角相等,對應邊成比例的三角形叫相似三角形.三角形相似判定:,對應邊成比例。:平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似。1:兩角對應相等,兩三角形相似。2:兩邊對應成比例且夾角相等,兩三角形相似。
2025-01-12 12:54
【摘要】......相似三角形的應用一.選擇題(共8小題)1.如圖,在同一時刻,,一棵大樹的影長為5米,則這棵樹的高度為( ?。〢. B. C. D.2.如圖,小明在A時測得某樹的影長為1m,B時又測得該樹的影長為4
2024-08-08 20:00
【摘要】相似三角形的應用一.選擇題(共8小題)1.如圖,在同一時刻,,一棵大樹的影長為5米,則這棵樹的高度為( ?。〢. B. C. D.2.如圖,小明在A時測得某樹的影長為1m,B時又測得該樹的影長為4米,若兩次日照的光線互相垂直,樹的高度為( ?。〢.2m B.m C.m D.m3.如圖所示,一張等腰三角形紙片,底邊長18cm,底邊上的高長18cm,現(xiàn)沿底邊
2024-09-15 09:02
【摘要】......相似三角形實際應用【教學目標】1、熟練掌握相似三角形相關知識,并能靈活應用2、熟練掌握三角形相似常用模型及其求解方法,并能靈活應用3、掌握實際問題中三角形相似應用模型,并能準確識別求解【教學難點】
2024-08-05 00:16
【摘要】相似三角形與全等三角形的綜合復習友情提示:請根據課本相關內容,快速解決下列問題,8分鐘后交流展示你的成果?!疚曳此?,我梳理】(一)相似三角形1.定義:各角對應________,各邊對應成________的兩個三角形叫做相似三角形.2.判定(1)平行于三角
2025-01-27 14:14
【摘要】1.成比例的數(shù)(線段):叫做四個數(shù)成比例。那么或若,::cbaddcbadcba==,,,若a、b、c、d為四條線段,如果(或a:b=c:d),那么這四條線段a、b、c、d叫做成比例的線段,簡稱比例線段
2025-01-25 04:21
【摘要】中考第一輪復習:相似三角形友情提示:請根據課本相關內容,快速解決下列問題,5分鐘后交流展示你的成果?!疚曳此?,我梳理】(一)相似三角形1.定義:各角對應________,各邊對應成________的兩個三角形叫做相似三角形.2.判定(1)平行于三角形一邊的直線
2025-02-02 11:56
【摘要】問題1:相似三角形的有關概念(1).三個角對應_____、三條邊對應_______的兩個三角形叫做相似三角形(2).相似三角形的對應角_____,對應邊________.(3).相似比等于____的兩個三角形全等.相等成比例相等成比例1一、復習提問相似三角形的識別問:除定義之外,相似
2025-01-27 13:48
【摘要】相似三角形的判定定理:定理1:兩角對應相等,兩三角形相似。定理2:兩邊對應成比例且夾角相等,兩三角形相似。定理3:三邊對應成比例,兩三角形相似?!螦=∠A'∠B=∠B'△ABC∽△A'B'C'??△ABC∽△A'B'C'△ABC∽
2025-01-12 05:43
【摘要】一、下列各題有“病”嗎?如果有“病”,請寫出“病因”,沒有解答的,請你解答,并寫出你認為易讓別人犯錯的“陷阱”在哪兒?1:如圖1,要ΔADB∽ΔABC,那么還應增加的條件是_________.ACBD2:已知:如圖2,在□ABCD中,點E為邊CD上的一點,AE的延長線交BC的延長線于點F,請你寫出圖中的
【摘要】已知左、右兩棵并排的大樹的高分別是AB=8m和CD=12m,兩樹的根部的距離BD=5,一個身高的一條水平直路從左向右前進,當他與走邊較低的樹的距離小于多少時,就不能看到右邊較高的樹的頂端C?ABCDEFGH挑戰(zhàn)自我如圖,△ABC是一塊銳角三角形余料,邊BC=120毫米,高AD=
2025-01-24 04:44
【摘要】相似三角形x是6、3、2的第四比例項,則x=_____;若2:(a-3)=(a-3):8,則a=________.:2x-5y=0,則x:y=_____;._______;????yxyyyx:AD∥BE∥CF,則=;=;=
2025-01-13 22:11
【摘要】相似三角形相似三角形?相似三角形的概念?相似三角形的基本性質?相似三角形的預備定理兩幅形狀相同大小不等的長城的圖片是相似的。ABCDEF△ABC與△DEF三個角對應相等,三條邊對應成比例的兩個三角形,做相似三角形(similartrianglec)AB
【摘要】相似三角形復習(2)△ABC中,P是AB上一點,連接CP,以下條件不能判定△ACP∽△ABC的是()A∠ACP=∠BB∠APC=∠ACBCAC2=AP·ABDAC:CP=AB:BCABCP2、如圖,D、E分別是AB、AC上兩點,CD與BE相