【摘要】高一數(shù)學正切函數(shù)的圖像與性質林銀玲目標1、借助正切函數(shù)的圖像,說出正切函數(shù)的性質;2、能利用正切函數(shù)的性質解決最值、奇偶性、單調性、周期性等有關問題;自學指
2025-01-21 16:46
【摘要】余弦函數(shù)圖像和性質(1)學案(3)月()日編者:高小燕審稿人:全組人員星期授課類型:新授學習目標,牢記余弦函數(shù)的五個關鍵點,用五點法熟練作余弦函數(shù)的簡圖。,并用集合符號來表示;、余弦函數(shù)的圖象之間的關系,能說出函數(shù)co
2025-01-21 16:44
【摘要】余弦函數(shù)圖像和性質(二)(3)月()日編者:高小燕審稿人:全組人員星期授課類型:新授學習目標根據(jù)余弦函數(shù)圖象的特征,結合正弦函數(shù)的性質學習余弦函數(shù)的性質:單調性、奇偶性、對稱性和周期性等。課堂內容展示自學指導:余弦函數(shù)xycos?
【摘要】§的教學設計【教學目標】1、知識與技能目標:結合觀覽車的實例,了解周期、頻率、初相、相位的定義;會用五點法畫函數(shù)的簡圖;能借助多媒體課件,通過探索、觀察參數(shù)對函數(shù)圖象的影響,并概括出三角函數(shù)圖象各種變換的實質和內在規(guī)律.
2025-01-30 23:50
【摘要】一、自學目標:1、理解半角公式的推導過程2、會運用半角公式進行相關的運算。二、自學過程:C2α中令得cosα=2cos22?-1=1-2sin22?,將公式變形可得2?C=;2?S=。2.2?T的推導方法是2?S與2?C兩
2025-01-30 23:35
【摘要】正弦型函數(shù)的圖象課堂教學設計教學目標1、初步認識振幅、周期、頻率、初相的概念,認識正弦型函數(shù);2、會“五點作圖”作正弦型函數(shù)的圖象。例:、y=2sinx、y=sinx、、、等;3、能夠認識以上這些函數(shù)與正弦函數(shù)圖象的關系,即它們是如何通過正弦函數(shù)圖象平移、伸縮而得到;4、明確的物理意義,把數(shù)學知
2025-01-21 16:45
【摘要】正弦型函數(shù)的圖像變換教學設計一、教學目標:知識與技能目標:能借助計算機課件,通過探索、觀察參數(shù)A、ω、φ對函數(shù)圖象的影響,并能概括出三角函數(shù)圖象各種變換的實質和內在規(guī)律;會用圖象變換畫出函數(shù)y=Asin(ωx+φ)的圖象。過程與方法目標:通過對探索過程的體驗,培養(yǎng)學生的觀察能力和探索問題的能力,數(shù)形結合的思想;領會從特殊到
【摘要】雙基達標?限時20分鐘?1.函數(shù)y=-sinx,x∈??????-π2,3π2的簡圖是().解析由y=sinx與y=-sinx的圖象關于x軸對稱可知選D.答案D2.在[0,2π]內,不等式sinx-32的解集是().A.(0,
2025-01-30 23:47
【摘要】雙基達標?限時20分鐘?1.函數(shù)y=3sin??????2x+π6的圖象的一條對稱軸方程是().A.x=0B.x=2π3C.x=-π6D.x=π3解析令sin??????2x+π6=±1,得2x+π6=kπ+π2(k∈Z),即x=k2π
2025-01-31 01:12
【摘要】?2?2??2?3???2??3??Oy11?§余弦、正切函數(shù)的圖象與性質(課前預習案)班級:___姓名:________編寫:一、新知導學y=cosx=sin(____)(xR?)可知,余弦函數(shù)y=cosx圖象與正弦函數(shù)
【摘要】§(4)正弦函數(shù)的周期性、奇偶性、對稱性(課前預習案)班級:___姓名:________編寫:一、新知導學1、周期函數(shù)的定義:對于函數(shù)f(x),如果存在一個________,使得定義域內的_______,都滿足____________,那么函數(shù)f(x)就叫做___________,_____叫做這個
【摘要】余弦函數(shù)、正切函數(shù)的圖象與性質一.學習要點:余弦函數(shù)、正切函數(shù)的圖象與性質二.學習過程:1.余弦函數(shù)的圖象2.余弦函數(shù)的性質(1)定義域:.(2)值域:當時,max1y?.當
【摘要】誘導公式(一)崔文一、學習目標:1.了解三角函數(shù)的誘導公式的意義和作用.2.理解誘導公式的推導過程.3.能運用有關誘導公式解決一些三角函數(shù)的求值、化簡和證明問題.二、重點與難點:重點:誘導公式的記憶、理解、運用。難點:誘導公式的推導、記憶及符號的判斷;三、自學檢測誘導公式一~三(1)公式一:s
【摘要】撰稿教師:李麗麗自學目標1.理解向量的概念,掌握向量的二要素(長度、方向);2.能正確地表示向量,初步學會求向量的模長;3.注意向量的特點:可以平行移動學習重、難點:1.向量、相等向量、共線向量的概念;2.向量的幾何表示學習過程一、課前準備(預習教材77頁~79頁,找出疑惑之處)二、新課導學(一)問題探
【摘要】§向量的加法(課前預習案)班級:___姓名:________編寫:一、新知導學a,b在平面上任取一點A,作AB=,BC=,再作向量AC,則向量叫做a與b的和(或),記作,即a+b=AB+B
2025-01-30 23:46