【正文】
ing from the encoder, arithmetically decodes it, and progressively builds up the significance map and enhancement list in the exact same way as they were created by the encoder. The embedded nature of the bitstream produced by this encoder provides a certain degree of error protection. Specifically, all of the information which arrives before the first bit error occurs can be used to reconstruct the image。 這樣,一個(gè)分組的誤碼不會(huì)影響到其他的分組,允許更多未損壞的信息到達(dá)解碼器 標(biāo)引詞 系數(shù)分割,內(nèi)嵌碼流,錯(cuò)誤恢復(fù),圖像壓縮,低復(fù)雜性,小波?;谶@種應(yīng)用環(huán)境,無(wú)論從復(fù)雜性還是信息理論的角度,合并信源和信道編碼(即壓縮和糾錯(cuò))流程都是十分有利的。在這里采用的方法修改了Shapiro 的嵌入式零樹(shù)小波(零樹(shù))圖像壓縮算法,但其基本思想可以很容易地適用于其他基于小波變換的嵌入式編碼,例如 Said and 2 Pearlman 的基于小波變換的嵌入式編碼和 Taubman and Zakho 的基于小波變換的嵌入式編碼。 本文組織如下。接下來(lái),我們?cè)诘谌?jié)開(kāi)發(fā)新的魯棒性編碼器并且探索相關(guān)實(shí)施編碼器的方案。最后,在第六節(jié)中討論執(zhí)行和復(fù)雜性問(wèn)題,在第七節(jié)記錄隨后的結(jié)論。此位平面編碼是通過(guò)比較小波系數(shù)和閾值 T的大小來(lái)確定哪些系數(shù)是重要的:如果小波系數(shù)比 T 大,則這個(gè)小波系數(shù)是重要的。這個(gè)字符可以是用 +或 來(lái)描述重要系數(shù)的標(biāo)記;一個(gè)“ 0”表明該系數(shù)是微不足道的 。 ZTR 字符的引入大大提高了編碼效率,因?yàn)樗试S編碼器利用已在大多數(shù)圖像中被觀察到的層間之間的相關(guān)性。在傳輸之前,重要性圖表字符和分辨率增強(qiáng)字符使用簡(jiǎn)單的自適應(yīng)模型 3 描述 ,以四個(gè)字母 符號(hào)來(lái)進(jìn)行算術(shù)編碼(增加一個(gè)停止字符)。此時(shí),傳輸停止符號(hào)。 編碼器產(chǎn)生的比特流的內(nèi)嵌性質(zhì)提供一定程度上的誤差防護(hù)。一切在丟失后都可以到達(dá)。此外,我們已經(jīng)發(fā)現(xiàn), EZW 算法實(shí) 際上在實(shí)現(xiàn)其目標(biāo)碼率或失真之前,當(dāng)其解碼器終止(通過(guò)解碼停止符號(hào))的時(shí)候可以檢測(cè)到存在的錯(cuò)誤。我們考慮編碼器和解碼器使用相同的落后的自適應(yīng)模型來(lái)計(jì)算 5 個(gè)可能字符( 4 數(shù)據(jù)字符加上停止字符)的概率,并且這些概率直接確定碼字。如果將一個(gè)完全隨機(jī)位序列送入解碼器,那么任何字符的解碼概率完全取決于自適應(yīng)模型的初始狀態(tài),也就是說(shuō),一般來(lái)說(shuō),一個(gè)隨機(jī)的輸入并不改變概率權(quán)重的模型定義。由于 cum_freq(所有的字符的頻率的總和)每逢超過(guò) Max_frequency 都要除以 2,譯碼停止字符的概率主要是在 1/250~ 1/500 之間。 4 比特流可以正確理解為編碼器和解碼器的同步,但這種同步在第一個(gè)錯(cuò)誤發(fā)生后不久將會(huì)失去。因?yàn)槊總€(gè) 符號(hào)在壓縮圖像中代表 1 至 2 位,編碼器錯(cuò)誤發(fā)生后的 31 至 125 字節(jié)時(shí)會(huì)自行終止。如果溢出和正確解碼的位數(shù)相比是比較小的,它并不會(huì)顯著影響的重建圖像的質(zhì)量。 5 1 A New Method of Robust Image Compression Based on the Embedded Zerotree Wavelet Algorithm(二) Charles D. Creusere III. ROBUST EZW (REZW) ALGORITHM The basic idea of the REZW image pression algorithm is to divide the wavelet coefficients up into S groups and then to quantize and code each of them independently so that S different embedded bitstreams are created. These bitstreams are then interleaved as appropriate (., bits, bytes, packets, etc.) prior to transmission so that the embedded nature of the posite bitstream is maintained. In the remainder of this paper we assume that individual bits are interleaved. For the REZW approach to be effective, each group of wavelet coefficients must be of equal size and must uniformly span the image. A similar method has been proposed in to parallelize the EZW algorithm, but that method instead groups the coefficients so that data transmission between processors is minimized. What do we gain by using this new algorithm over the conventional one? As has been pointed out in Section II, the EZW decoder can use all of the bits received before the occurrence of the first error to reconstruct the image. By coding the wavelet coefficients with multiple, independent (and interleaved) bit streams, a single bit error truncates only one of the streams—the others are still pletely receiv