【正文】
工件的坐標(biāo)表現(xiàn)。同時發(fā)現(xiàn)混合相對等于甚至大于位移的初始位置,接口相對的界面區(qū)域可以認(rèn)為是近似關(guān)系圖10變化在沿矩形空腔流動的流線行進(jìn)的差分材料元件的標(biāo)高(a)和方位(b)所示可以由公式12計(jì)算出速度(F是正常材料平面之間的角度和軸)圖11比較的界面拉伸矩形空腔流預(yù)測了SFT( ),預(yù)測使用的流場比值12(─),(W / H = 15,最初垂直界面) (13)而在擠出機(jī)混合分析中速度計(jì)算可以由等式12得出,這并不包括另外概念上的問題,這與SFT的計(jì)算量相比明顯增加了,因此,確定流體元件的取向變化與該流場獲得的信息是否可以被納入使用SFT結(jié)果準(zhǔn)確混合計(jì)算是有用的,圖10中,表示典型的時間差分線元的取向變化的關(guān)系,也表示在圖中的上面部分是元素相應(yīng)的坐標(biāo)(圖10a),虛線表示最大值和最小值的位置。SFT的研究與假設(shè)是邊界旋轉(zhuǎn)近,通過材料元素混合的預(yù)測是否有用,現(xiàn)在得到驗(yàn)證。然而,對于有限次的界面是從來沒有完全意義上的水平,SFT中預(yù)測一個小而有限的拓展與公式12的結(jié)果一致。由于缺少實(shí)驗(yàn)數(shù)據(jù),實(shí)驗(yàn)數(shù)據(jù)的理論預(yù)測比較難,可行性實(shí)驗(yàn)數(shù)據(jù)不完整(例如 Bigg 和Middleman,1974b) 兩者都是因?yàn)椴淮_定二維流動是否在實(shí)驗(yàn)裝置中實(shí)現(xiàn)和并不是大多數(shù)據(jù)在有利的情況下測得(較大的縱橫比)。從空腔流得到的結(jié)論在擠出機(jī)中的應(yīng)用應(yīng)謹(jǐn)慎,但應(yīng)注意的是,流速在整個擠出機(jī)中的橫截面的分布可防止確切坐標(biāo)中的矩形腔和軸向距離沿著所述擠出機(jī)連續(xù)時間之間轉(zhuǎn)化,另外,從拓?fù)涞慕嵌葋砜?,如果我們考慮兩種流體混合,說A和B最初在腔流水平層狀,然后在側(cè)壁的兩條接觸線,最后存在于整個運(yùn)動,然而,擠出機(jī)最初充滿,隨后A和B作為參考,相鄰的水平層將有明顯區(qū)分,沒有接觸線,當(dāng)在垂直界面時將會出現(xiàn)類似情況。分析單螺桿擠出機(jī)的混合關(guān)于在擠出機(jī)中混合方法的分析主要與用于所述螺旋環(huán)形混合器類似,修改是必要的,但是,通過公式12算出的速度場,得出一個完全的分析方法是不可能的,由在流體元件跡線的總數(shù)不連續(xù)可排除SFT 。至于螺旋環(huán)形混合器,和 s用作最大混合度的局部措施,混合參數(shù)和分部在任一通道截面對應(yīng)流場的不均勻性中,并在進(jìn)料面上條紋的方向及厚度分布,對于許多應(yīng)用來說在第一個片刻來描述這些分布應(yīng)該是足夠了。選擇平面的數(shù)量應(yīng)足夠大,從而這個變量計(jì)算分布的影響可以忽略不計(jì);當(dāng)然,實(shí)際數(shù)字依賴所取得的結(jié)果;在實(shí)踐中,200300因素被認(rèn)為足夠條紋厚度幅度下降三個數(shù)量級。(2)公式2用于所述流場的數(shù)學(xué)描述來計(jì)算這些材料每個平面的拉伸過程。對于連續(xù)流動系統(tǒng)的宏觀混合效率是由下列關(guān)系式確定(Ottino等人,1981) (15)在更詳細(xì)的計(jì)算中,檢查上混合綁定是很有意義的,通過設(shè)置公式15中右側(cè)的eff(z) = 1獲得。 (16)取函數(shù){N}和含有,的函數(shù)以及L/H函數(shù)的比例常數(shù)的平均值(需要考慮其上的平均停留時間的影響)。W / H的影響只能間接地通過移動流體單元的垂直坐標(biāo)變化。這些結(jié)論與定性實(shí)驗(yàn)結(jié)果相一致(Maddock,1959;Sheridan, 1975),在下一節(jié)中將使用更完美的分析方法進(jìn)行測試。 Erwin and Moktharian, 1981). The simplest such description for this flow is that given by eq 1. Figure6. Comparison of streamlines for rectangular cavity flow obtained using the SFT ( ) and eq 12 for W/H = 15.However, in using eq 1 in conjunction with eq 11 to determine L(t), assumptions are necessary regarding the changes in orientation and deformation undergone by a material element in moving to its plementary location. However, putations indicate that the mixing achieved is extremely sensitive to the assumed change in orientation at the flights. It is therefore desirable to develop a mathematical description of the flow field that does not entail such arbitrary assumptions. While a numerical solution to the NavierStokes equations for this flow field (eq ,2)is possible, it does not seem feasible to pute stretch ratios of order or higher based on current tracking techniques. Additionally, a semianalytical treatment allows for easier visualization of the effect of different parameters. Hence, in the Appendix,the KantorovichGalerkin method (Kantorovich and Krylov, 1964) is used to obtain an approximate analytical steadystate, creeping flow solution to the cavity flow equations. From eq , , and where,andare functions only of the cavity aspect ratio, defined in eq . Even though these equations satisfy the boundary condition on the velocity at the moving plate only in the mean the streamlines calculated using them are in good agreement, for large aspect ratios, with those obtained by more accurate numerical methods (Pan and Acrivos, 1967)。 the period of oscillation of the curves about a monotonically increasing mean value is approximately equal to , a characteristic recirculation periodic oscillation can be seen more clearly in Figure 8, where the specific rate of stretching of the interface a(= d In L(t)/dt) plotted vs. time shows the same characteristic oscillation. Thus the cavity flow has weak reorientation (Figure 3b).Figure7. Relative stretch of interface in rectangular cavity flow as a function of the channel aspect ratio, calculated with the velocity field of eq 12, for an initially vertical interface (perpendicular to the moving plate) dividing cavity into equal volumes.Figure8. Nondimensionalized specific rate of stretching of interface in rectangular cavity flow (W/H = 15, initially vertical interface).Figure9. Influence of initial orientation on relative stretch of interface in rectangular cavity flow (W/H = 15) The influence of the initial orientation of the interface on the normalized interface length is shown in Figure 9. The apparent sen