【摘要】1第九章多元函數(shù)微分學(xué)(下)21、設(shè)空間曲線的方程)1()()()(????????tztytx???ozyx(1)式中的三個(gè)函數(shù)均可導(dǎo).第六節(jié)偏導(dǎo)數(shù)在幾何上的應(yīng)用M?.),,(0000tttzzyyxxM
2025-06-20 22:04
【摘要】多元函數(shù)微分學(xué)的幾何應(yīng)用1空間曲線的切線與法平面曲面的切平面與法線多元函數(shù)微分學(xué)的幾何應(yīng)用全微分的幾何意義小結(jié)思考題作業(yè)第8章多元函數(shù)微分法及其應(yīng)用多元函數(shù)微分學(xué)的幾何應(yīng)用2設(shè)空間曲線的方程)1()()()()(??????????
2025-04-02 15:34
【摘要】多元函數(shù)微分法講義第十章多元函數(shù)微分學(xué)§ 多元函數(shù):一、平面點(diǎn)集1、定義:把全體有序?qū)崝?shù)對(duì)組成的集合,稱為二維空間,記為(或),(實(shí)際上這里的二維空間的概念就是解析幾何中的二維空間概念)。下面我們看一看這里的二維空間有一個(gè)什么樣的幾何意義,顯然都唯一對(duì)應(yīng)著直角坐標(biāo)平面的一個(gè)點(diǎn),反之然,∴中的有序數(shù)對(duì)與直角平面上的點(diǎn)是一一對(duì)應(yīng)的,它們的本質(zhì)是一樣的,
2025-06-04 00:25
2025-07-18 10:10
【摘要】第一篇:多元函數(shù)微分學(xué) 多元函數(shù)的極限與連續(xù) 一、平面點(diǎn)集與多元函數(shù) (一)平面點(diǎn)集:平面點(diǎn)集的表示:E={(x,y)|(x,y)滿足的條件}.: ⑴全平面和半平面:{(x,y)|x30},{...
2024-11-15 03:05
【摘要】第一篇:多元函數(shù)微分學(xué)復(fù)習(xí) 第六章多元函數(shù)微分學(xué)及其應(yīng)用 多元函數(shù)的基本概念一、二元函數(shù)的極限 定義f(P)=f(x,y)的定義域?yàn)镈,oP0(x0,y0),對(duì)于任意給定的正數(shù)e,總存在正數(shù)d,...
2024-11-09 17:26
【摘要】第八章多元函數(shù)微分法及其應(yīng)用上冊(cè)研究了一元函數(shù)微分法,利用這些知識(shí),我們可以求直線上質(zhì)點(diǎn)運(yùn)動(dòng)的速度和加速度,也可以求曲線的切線的斜率,可以判斷函數(shù)的單調(diào)性和極值、最值等,但這遠(yuǎn)遠(yuǎn)不夠,因?yàn)橐辉瘮?shù)只是研究了由一個(gè)因素確定的事物。一般地說(shuō),研究自然現(xiàn)象總離不開時(shí)間和空間,確定空間的點(diǎn)需要三個(gè)坐標(biāo),所以一般的物理量常常依賴于四個(gè)變量,在有些問(wèn)題中還需要考慮更多的變量,這樣就有必要研究多
2025-08-05 08:16
【摘要】第12章多元函數(shù)微分學(xué)的MATLAB求解編者Outline?多元函數(shù)的基本概念?偏導(dǎo)數(shù)?全微分?多元函數(shù)微分學(xué)的幾何應(yīng)用?方向?qū)?shù)與梯度?多元函數(shù)的極值?多元函數(shù)的泰勒公式?最小二乘法及其MATLAB實(shí)現(xiàn)多元函數(shù)的基本概念n元
2024-12-20 13:26
【摘要】第十七章多元函數(shù)微分學(xué)一、證明題1.證明函數(shù)在點(diǎn)(0,0)連續(xù)且偏導(dǎo)數(shù)存在,但在此點(diǎn)不可微.2.證明函數(shù)在點(diǎn)(0,0)連續(xù)且偏導(dǎo)數(shù)存在,但偏導(dǎo)數(shù)在點(diǎn)(0,0)不連續(xù),而f在原點(diǎn)(0,0)可微.3.證明:若二元函數(shù)f在點(diǎn)p(x0,y0)的某鄰域U(p)內(nèi)的偏導(dǎo)函數(shù)fx與fy有界,則f在U(p)內(nèi)連續(xù).4.試證在原點(diǎn)(0,0)的充分小鄰域內(nèi)有
2024-09-27 05:01
【摘要】一、函數(shù)、極限、連續(xù)三、多元函數(shù)微分學(xué)二、導(dǎo)數(shù)與微分微分學(xué)四、微分學(xué)應(yīng)用一、一、函數(shù)、極限、連續(xù)函數(shù)、極限、連續(xù)1.一元函數(shù)顯函數(shù)定義域:使表達(dá)式有意義的實(shí)數(shù)全體或由實(shí)際意義確定。隱函數(shù)參數(shù)方程所表示的函數(shù)函數(shù)的特性函數(shù)的特性有界性,單調(diào)性,奇偶性,周期性復(fù)合函數(shù)(構(gòu)造新函數(shù)的重要方法)初等函數(shù)由
2025-03-12 19:47
【摘要】1§預(yù)備知識(shí)§多元函數(shù)的概念§偏導(dǎo)數(shù)§全微分及其應(yīng)用§多元復(fù)合函數(shù)的微分法§隱函數(shù)的微分法§二元函數(shù)的極值與最值第八章多元函數(shù)的微分法及其應(yīng)用(,)zfxy?2zbxy
2024-12-15 14:32
【摘要】習(xí)題課:多元函數(shù)求偏導(dǎo),多元函數(shù)微分的應(yīng)用多元復(fù)合函數(shù)、隱函數(shù)的求導(dǎo)法?(1)多元復(fù)合函數(shù)設(shè)二元函數(shù)在點(diǎn)處偏導(dǎo)數(shù)連續(xù),二元函數(shù)在點(diǎn)處偏導(dǎo)數(shù)連續(xù),并且,則復(fù)合函數(shù)在點(diǎn)處可微,且多元函數(shù)微分形式的不變性:設(shè),均為連續(xù)可微,則將看成的函數(shù),有計(jì)算,代人,我們將叫做微分形式不變性。例1設(shè),求。解:
2024-09-04 01:20
【摘要】第八章第三節(jié)機(jī)動(dòng)目錄上頁(yè)下頁(yè)返回結(jié)束二、多變量函數(shù)的偏導(dǎo)數(shù)三、高階偏導(dǎo)數(shù)多變量函數(shù)的微分和偏導(dǎo)數(shù)第八章一、多變量函數(shù)的微分一、多變量函數(shù)的微分定義設(shè)在的鄰域中有定義,
2024-09-04 18:36
【摘要】題目盡量簡(jiǎn)單,(每個(gè)題目都標(biāo)上難度系數(shù)),格式如下:1、設(shè)。。。。。。。,則。。。。。。等于(?????????)(10,)第七章多元函數(shù)微分學(xué)1多元函數(shù)1.,答案已知函數(shù),則;2.,答案已知函數(shù),則;3.,答案已知函數(shù),則;
2025-07-25 17:58
【摘要】第六節(jié)復(fù)習(xí)目錄上頁(yè)下頁(yè)返回結(jié)束二、空間曲線的切線與法平面三、曲面的切平面與法線多元函數(shù)微分學(xué)的幾何應(yīng)用第九章一、一元向量值函數(shù)及其導(dǎo)數(shù)一、一元向量值函數(shù)及其導(dǎo)數(shù)定義:設(shè)數(shù)集,則稱映射D?R:nfD?R為一元向量值函數(shù),通常記為:(),
2024-09-15 15:27