freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

備戰(zhàn)中考數(shù)學-平行四邊形-培優(yōu)易錯試卷練習(含答案)含答案解析-在線瀏覽

2025-03-31 22:12本頁面
  

【正文】 APE與△APF的底EP=FP,又等高,得出S△APE=S△APF,由△APF與△CPF的底AF=CF,又等高,得出S△APF=S△CPF,證得△PGH底邊GH上的高等于△AEF底邊EF上高的一半,推出S△PGH=S△AEF=S△APF,即可得出結(jié)果.【詳解】(1)證明:∵E、F、G、H分別是AB、AC、PB、PC的中點,∴EG∥AP,EF∥BC,EF=BC,GH∥BC,GH=BC,∴EF∥GH,EF=GH,∴四邊形EGHF是平行四邊形,∵AB=AC,∴AD⊥BC,∴EF⊥AP,∵EG∥AP,∴EF⊥EG,∴平行四邊形EGHF是矩形;(2)∵PE是△APB的中線,∴△APE與△BPE的底AE=BE,又等高,∴S△APE=S△BPE,∵AP是△AEF的中線,∴△APE與△APF的底EP=FP,又等高,∴S△APE=S△APF,∴S△APF=S△BPE,∵PF是△APC的中線,∴△APF與△CPF的底AF=CF,又等高,∴S△APF=S△CPF,∴S△CPF=S△BPE,∵EF∥GH∥BC,E、F、G、H分別是AB、AC、PB、PC的中點,∴△AEF底邊EF上的高等于△ABC底邊BC上高的一半,△PGH底邊GH上的高等于△PBC底邊BC上高的一半,∴△PGH底邊GH上的高等于△AEF底邊EF上高的一半,∵GH=EF,∴S△PGH=S△AEF=S△APF,綜上所述,與△BPE面積相等的三角形為:△APE、△APF、△CPF、△PGH.【點睛】本題考查了矩形的判定與性質(zhì)、平行四邊形的判定、三角形中位線定理、平行線的性質(zhì)、三角形面積的計算等知識,熟練掌握三角形中位線定理是解決問題的關(guān)鍵.6.閱讀下列材料:我們定義:若一個四邊形的一條對角線把四邊形分成兩個等腰三角形,則這條對角線叫這個四邊形的和諧線,這個四邊形叫做和諧四邊形.如正方形就是和諧四邊形.結(jié)合閱讀材料,完成下列問題:(1)下列哪個四邊形一定是和諧四邊形  ?。瓵.平行四邊形 B.矩形 C.菱形 D.等腰梯形(2)命題:“和諧四邊形一定是軸對稱圖形”是    命題(填“真”或“假”).(3)如圖,等腰Rt△ABD中,∠BAD=90176?;?0176。.【解析】試題分析:(1)根據(jù)菱形的性質(zhì)和和諧四邊形定義,直接得出結(jié)論.(2)根據(jù)和諧四邊形定義,分AD=CD,AD=AC,AC=DC討論即可.(1)根據(jù)和諧四邊形定義,平行四邊形,矩形,等腰梯形的對角線不能把四邊形分成兩個等腰三角形,菱形的一條對角線能把四邊形分成兩個等腰三角形夠.故選C.(2)∵等腰Rt△ABD中,∠BAD=90176。;若AD=AC,如圖 2,則AB=AC=BC,△ABC是等邊三角形,∠ABC=60176。.考點:;2.菱形的性質(zhì);3.正方形的判定和性質(zhì);4.等邊三角形的判定和性質(zhì);.7.定義:我們把三角形被一邊中線分成的兩個三角形叫做“友好三角形”.性質(zhì):如果兩個三角形是“友好三角形”,那么這兩個三角形的面積相等.理解:如圖①,在△ABC中,CD是AB邊上的中線,那么△ACD和△BCD是“友好三角形”,并且S△ACD=S△BCD.應用:如圖②,在矩形ABCD中,AB=4,BC=6,點E在AD上,點F在BC上,AE=BF,AF與BE交于點O.(1)求證:△AOB和△AOE是“友好三角形”;(2)連接OD,若△AOE和△DOE是“友好三角形”,求四邊形CDOF的面積.探究:在△ABC中,∠A=30176。根據(jù)三角形面積公式求出即可;②求出高CQ,求出△A′DC的面積.即可求出△ABC的面積.試題解析:(1)∵四邊形ABCD是矩形,∴AD∥BC,∵AE=BF,∴四邊形ABFE是平行四邊形,∴OE=OB,∴△AOE和△AOB是友好三角形.(2)∵△AOE和△DOE是友好三角形,∴S△AOE=S△DOE,AE=ED=AD=3,∵△AOB與△AOE是友好三角形,∴S△AOB=S△AOE,∵△AOE≌△FOB,∴S△AOE=S△FOB,∴S△AOD=S△ABF,∴S四邊形CDOF=S矩形ABCD2S△ABF=46243=12.探究:解:分為兩種情況:①如圖1,∵S△ACD=S△BCD.∴AD=BD=AB,∵沿CD折疊A和A′重合,∴AD=A′D=AB=4=2,∵△A′CD與△ABC重合部分的面積等于△ABC面積的,∴S△DOC=S△ABC=S△BDC=S△ADC=S△A′DC,∴DO=OB,A′O=CO,∴四邊形A′DCB是平行四邊形,∴BC=A′D=2,過B作BM⊥AC于M,∵AB=4,∠BAC=30176。由勾股定理得:AC=,∴△ABC的面積是BCAC=22=2;②如圖2,∵S△ACD=S△BCD.∴AD=BD=AB,∵沿CD折疊A和A′重合,∴AD=A′D=AB=4=2,∵△A′CD與△ABC重合部分的面積等于△ABC面積的,∴S△DOC=S△ABC=S△BDC=S△ADC=S△A′DC,∴DO=OA′,BO=CO,∴四邊形A′BDC是平行四邊形,∴A′C=BD=2,過C作CQ⊥A′D于Q,∵A′C=2,∠DA′C=∠BAC=30176。時,猜想此時線段CF,AE,OE之間有怎樣的數(shù)量關(guān)系,直接寫出結(jié)論不必證明.【答案】(1)OE=OF.理由見解析;(2)補全圖形如圖所示見解析,OE=OF仍然成立;(3)CF=OE+AE或CF=OE﹣AE.【解析】【分析】(1)根據(jù)矩形的性質(zhì)以及垂線,即可判定,得出OE=OF;(2)先延長EO交CF于點G,通過判定,得出OG=OE,再根據(jù)中,即可得到OE=OF;(3)根據(jù)點P在射線OA上運動,需要分兩種情況進行討論:當點P在線段OA上時,當點P在線段OA延長線上時,分別根據(jù)全等三角形的性質(zhì)以及線段的和差關(guān)系進行推導計算即可.【詳解】(1)OE=OF.理由如下:如圖1.∵四邊形ABCD是矩形,∴ OA=OC.∵,∴.∵在和中,∴,∴ OE=OF;(2)補全圖形如圖2,OE=OF仍然成立.證明如下:延長EO交CF于點G.∵,∴ AE//CF,∴.又∵點O為AC的中點,∴ AO=CO.在和中,∴,∴ OG=OE,∴中,∴ OE=OF;(3)CF=OE+AE或CF=OEAE.證明如下:①如圖2,當點P在線段OA上時.∵,∴,由(2)可得:OF=OG,∴是等邊三角形,∴ FG=OF=OE,由(2)可得:,∴ CG=AE.又∵ CF=GF+CG,∴ CF=OE+AE;②如圖3,當點P在線段OA延長線上時.∵,∴,同理可得:是等邊三角形,∴ FG=OF=OE,同理可得:,∴ CG=AE.又∵ CF=GFCG,∴ CF=OEAE.【點睛】本題屬于四邊形綜合題,主要考查了矩形的性質(zhì)、全等三角形的性質(zhì)和判定以及等邊三角形的性質(zhì)和判定,解決問題的關(guān)鍵是構(gòu)建全等三角形和證明三角形全等,利用矩形的對角線互相平分得全等的邊相等的條件,根據(jù)線段的和差關(guān)系使問題得以解決.9.(1)問題發(fā)現(xiàn)如圖1,點E.連接EF、則EF=BE+DF,試說明理由;(2)類比引申如圖2,在四邊形A
點擊復制文檔內(nèi)容
環(huán)評公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1