freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

中考數(shù)學(xué)(二次函數(shù)提高練習(xí)題)壓軸題訓(xùn)練含答案解析-在線瀏覽

2025-03-31 07:28本頁面
  

【正文】 決問題.試題解析:解:(1)把B(3,0),C(0,3)代入y=x2+bx+c得:,解得:,∴拋物線y=x2+bx+c的表達(dá)式為y=x2﹣4x+3;(2)如圖1,拋物線的對稱軸為直線x=﹣=2,設(shè)D(2,y),B(3,0),C(0,3),∴BC2=32+32=18,DC2=4+(y﹣3)2,BD2=(3﹣2)2+y2=1+y2,當(dāng)△BCD是以BC為直角邊,BD為斜邊的直角三角形時(shí),BC2+DC2=BD2,即18+4+(y﹣3)2=1+y2,解得:y=5,此時(shí)D點(diǎn)坐標(biāo)為(2,5);當(dāng)△BCD是以BC為直角邊,CD為斜邊的直角三角形時(shí),BC2+DB2=DC2,即4+(y﹣3)2=1+y2+18,解得:y=﹣1,此時(shí)D點(diǎn)坐標(biāo)為(2,﹣1);(3)易得BC的解析式為y=﹣x+3.∵直線y=x+m與直線y=x平行,∴直線y=﹣x+3與直線y=x+m垂直,∴∠CEF=90176。∴P點(diǎn)坐標(biāo)為:P2(﹣1,)或P3(﹣1,﹣);∴當(dāng)CM=CP時(shí),由勾股定理得:(﹣1)2+32=(﹣1)2+(3﹣a)2,解得a=6,∴P點(diǎn)坐標(biāo)為:P4(﹣1,6).綜上所述存在符合條件的點(diǎn)P,其坐標(biāo)為P(﹣1,)或P(﹣1,﹣)或P(﹣1,6)或P(﹣1,);(3)存在,Q(﹣1,2),理由如下:如答圖2,點(diǎn)C(0,3)關(guān)于對稱軸x=﹣1的對稱點(diǎn)C′的坐標(biāo)是(﹣2,3),連接AC′,直線AC′與對稱軸的交點(diǎn)即為點(diǎn)Q.設(shè)直線AC′函數(shù)關(guān)系式為:y=kx+t(k≠0).將點(diǎn)A(1,0),C′(﹣2,3)代入,得,解得,所以,直線AC′函數(shù)關(guān)系式為:y=﹣x+1.將x=﹣1代入,得y=2,即:Q(﹣1,2);(4)過點(diǎn)E作EF⊥x軸于點(diǎn)F,設(shè)E(a,﹣a2﹣2a+3)(﹣3<a<0)∴EF=﹣a2﹣2a+3,BF=a+3,OF=﹣a∴S四邊形BOCE=BF?EF+(OC+EF)?OF=(a+3)?(﹣a2﹣2a+3)+(﹣a2﹣2a+6)?(﹣a)=﹣a2﹣a+=﹣(a+)2+,∴當(dāng)a=﹣時(shí),S四邊形BOCE最大,且最大值為.此時(shí),點(diǎn)E坐標(biāo)為(﹣ ,).【點(diǎn)睛】本題主要考查了二次函數(shù)的綜合知識,要注意的是(2)中,不確定等腰三角形哪條邊是底邊的情況下,要分類進(jìn)行求解,不要漏解.9.在平面直角坐標(biāo)系xOy中,已知拋物線的頂點(diǎn)坐標(biāo)為(2,0),且經(jīng)過點(diǎn)(4,1),如圖,直線y=x與拋物線交于A、B兩點(diǎn),直線l為y=﹣1.(1)求拋物線的解析式;(2)在l上是否存在一點(diǎn)P,使PA+PB取得最小值?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.(3)知F(x0,y0)為平面內(nèi)一定點(diǎn),M(m,n)為拋物線上一動點(diǎn),且點(diǎn)M到直線l的距離與點(diǎn)M到點(diǎn)F的距離總是相等,求定點(diǎn)F的坐標(biāo).【答案】(1)拋物線的解析式為y=x2﹣x+1.(2)點(diǎn)P的坐標(biāo)為(,﹣1).(3)定點(diǎn)F的坐標(biāo)為(2,1).【解析】分析:(1)由拋物線的頂點(diǎn)坐標(biāo)為(2,0),可設(shè)拋物線的解析式為y=a(x2)2,由拋物線過點(diǎn)(4,1),利用待定系數(shù)法即可求出拋物線的解析式;(2)聯(lián)立直線AB與拋物線解析式成方程組,通過解方程組可求出點(diǎn)A、B的坐標(biāo),作點(diǎn)B關(guān)于直線l的對稱點(diǎn)B′,連接AB′交直線l于點(diǎn)P,此時(shí)PA+PB取得最小值,根據(jù)點(diǎn)B的坐標(biāo)可得出點(diǎn)B′的坐標(biāo),根據(jù)點(diǎn)A、B′的坐標(biāo)利用待定系數(shù)法可求出直線AB′的解析式,再利用一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征即可求出點(diǎn)P的坐標(biāo);(3)由點(diǎn)M到直線l的距離與點(diǎn)M到點(diǎn)F的距離總是相等結(jié)合二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,即可得出(1y0)m2+(22x0+2y0)m+x02+y022y03=0,由m的任意性可得出關(guān)于x0、y0的方程組,解之即可求出頂點(diǎn)F的坐標(biāo).詳解:(1)∵拋物線的頂點(diǎn)坐標(biāo)為(2,0),設(shè)拋物線的解析式為y=a(x2)2.∵該拋物線經(jīng)過點(diǎn)(4,1),∴1=4a,解得:a=,∴拋物線的解析式為y=(x2)2=x2x+1.(2)聯(lián)立直線AB與拋物線解析式成方程組,得:,解得:,∴點(diǎn)A的坐標(biāo)為(1,),點(diǎn)B的坐標(biāo)為(4,1).作點(diǎn)B關(guān)于直線l的對稱點(diǎn)B′,連接AB′交直線l于點(diǎn)P,此時(shí)PA+PB取得最小值(如圖1所示).∵點(diǎn)B(4,1),直線l為y=1,∴點(diǎn)B′的坐標(biāo)為(4,3).設(shè)直線AB′的解析式為y=kx+b(k≠0),將A(1,)、B′(4,3)代入y=kx+b,得:,解得:,∴直線AB′的解析式為y=x+,當(dāng)y=1時(shí),有x+=1,解得:x=,∴點(diǎn)P的坐標(biāo)為(,1).(3)∵點(diǎn)M到直線l的距離與點(diǎn)M到點(diǎn)F的距離總是相等,∴(mx0)2+(ny0)2=(n+1)2,∴m22x0m+x022y0n+y02=2n+1.∵M(jìn)(m,n)為拋物線上一動點(diǎn),∴n=m2m+1,∴m22x0m+x022y0(m2m+1)+y02=2(m2m+1)+1,整理得:(1y0)m2+(22x0+2y0)m+x02+y022y03=0.∵m為任意值,∴,∴,∴定點(diǎn)F的坐標(biāo)為(2,1).點(diǎn)睛:本題考查了待定系數(shù)法求二次(一次)函數(shù)解析式、二次(一次)函數(shù)圖象上點(diǎn)的坐標(biāo)特征、軸對稱中的最短路徑問題以及解方程組,解題的關(guān)鍵是:(1)根據(jù)點(diǎn)的坐標(biāo),利用待定系數(shù)法求出二次函數(shù)解析式;(2)利用兩點(diǎn)之間線段最短找出點(diǎn)P的位置;(3)根據(jù)點(diǎn)M到直線l的距離與點(diǎn)M到點(diǎn)F的距離總是相等結(jié)合二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,找出關(guān)于x0、y0的方程組.10.如圖,二次函數(shù)圖象的頂點(diǎn)為,對稱軸是直線,一次函數(shù)的圖象與軸交于點(diǎn),且與直線關(guān)于的對稱直線交于點(diǎn).(1)點(diǎn)的坐標(biāo)是 ______;(2)直線與直線交于點(diǎn),是線段上一點(diǎn)(不與點(diǎn)、重合),點(diǎn)的縱坐標(biāo)為.過點(diǎn)作直線與線段、分別交于點(diǎn),使得與相似.①當(dāng)時(shí),求的長;②若對于每一個(gè)確定的的值,有且只有一個(gè)與相似,請直接寫出的取值范圍 ______.【答案】(1);(2)①;②.【解析】【分析】(1)直接用頂點(diǎn)坐標(biāo)公式求即可;(2)由對稱軸可知點(diǎn)C(2,),A(,0),點(diǎn)A關(guān)于對稱軸對稱的點(diǎn)(,0),借助AD的直線解析式求得B(5,3);①當(dāng)n=時(shí),N(2,),可求DA=,DN=,CD=,當(dāng)PQ∥AB時(shí),△DPQ∽△DAB,DP=9;當(dāng)PQ與AB不平行時(shí),DP=9;②當(dāng)PQ∥AB,DB=DP時(shí),DB=3,DN=,所以N(2,),則有且只有一個(gè)△DPQ與△DAB相似時(shí),<n<.【詳解】(1)頂點(diǎn)為;故答案為;(2)對稱軸,由已知可求,點(diǎn)關(guān)于對稱點(diǎn)為,則關(guān)于對稱的直線為,①當(dāng)時(shí),當(dāng)時(shí),,;當(dāng)與不平行時(shí),,;綜上所述;②當(dāng),時(shí),,,∴有且只有一個(gè)與相似時(shí),;故答案為;【點(diǎn)睛】本題考查二次函數(shù)的圖象及性質(zhì),三角形的相似;熟練掌握二次函數(shù)的性質(zhì),三角形相似的判定與性質(zhì)是解題的關(guān)鍵.11.如圖所示拋物線過點(diǎn),點(diǎn),且(1)求拋物線的解析式及其對稱軸;(2)點(diǎn)在直線上的兩個(gè)動點(diǎn),且,點(diǎn)在點(diǎn)的上方,求四邊形的周長的最小值;(3)點(diǎn)為拋物線上一點(diǎn),連接,直線把四邊形的面積分為3∶5兩部分,求點(diǎn)的坐標(biāo).【答案】(1),對稱軸為直線;(2)四邊形的周長最小值為;(3)【解析】【分析】(1)OB=OC,則點(diǎn)B(3,0),則拋物線的表達(dá)式為:y=a(x+1)(x3)=a(x22x3)=ax22ax3a,即可求解;(2)CD+AE=A′D+DC′,則當(dāng)A′、D、C′三點(diǎn)共線時(shí),CD+AE=A′D+DC′最小,周長也最小,即可求解;(3)S△PCB:S△PCA=EB(yCyP):AE(yCyP)=BE:AE,即可求解.【詳解】(1)∵OB=OC,∴點(diǎn)B(3,0),則拋物線的表達(dá)式為:y=a(x+1)(x3)=a(x22x3)=ax22ax3a,故3a=3,解得:a=1,故拋物線的表達(dá)式為:y
點(diǎn)擊復(fù)制文檔內(nèi)容
公司管理相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1