【摘要】第一篇:正弦定理與余弦定理的證明 在△ABC中,角A、B、C所對的邊分別為a、b、c,則有 a/sinA=b/sinB=c/sinC=2R(R為三角形外接圓的半徑) 正弦定理(Sinetheor...
2024-10-06 06:34
【摘要】第一篇:原創(chuàng)正弦定理證明 1.直角三角形中:sinA=,sinB=,sinC=1 即c= ∴abc,c=,c=.sinAsinBsinCacbcabc==sinAsinBsinC 2.斜三角形...
2024-10-03 21:41
【摘要】第一篇:正弦定理證明方法 正弦定理證明方法 方法1:用三角形外接圓 證明:任意三角形ABC,⊙,所以∠DAB=90度 因為同弧所對的圓周角相等,所以∠D等于∠ 類似可證其余兩個等式。 ∴a...
【摘要】第一篇:向量證明正弦定理 向量證明正弦定理 表述:設(shè)三面角∠p-ABC的三個面角∠BpC,∠CpA,∠ApB所對的二面角依次為∠pA,∠pB,∠pC,則Sin∠pA/Sin∠BpC=Sin∠pB/...
2024-11-15 02:44
【摘要】第一篇:正弦定理,余弦的多種證明 正弦(余弦)定理的另類證明 課本利用向量法證明正弦定理,:在一個三角形中,各邊和它所對角的正弦比相等,即a=bsinAsinB=:(等積法)在任意斜三角形ABC中...
2024-10-28 14:00
【摘要】第一篇:向量法證明正弦定理 向量法證明正弦定理 證明a/sinA=b/sinB=c/sinC=2R: 任意三角形ABC,⊙,所以∠DAB=90度 因為同弧所對的圓周角相等,所以∠D等于∠ 2...
2024-11-05 17:00
【摘要】第一篇:正弦定理證明 正弦定理證明 : △ABC中,設(shè)三邊為a,b,c。作CH⊥AB垂足為點H CH=a·sinB CH=b·sinA ∴a·sinB=b·sinA 得到 a/sinA...
2024-11-09 06:48
【摘要】第一篇:用向量證明正弦定理 用向量證明正弦定理 如圖1,△ABC為銳角三角形,過點A作單位向量j垂直于向量AC,則j與向量AB的夾角為90°-A,j與向量CB的夾角為90°-C 由圖1,AC+C...
2024-11-06 12:01
【摘要】第一篇:正弦定理的三種證明 △ABC中的三個內(nèi)角∠A,∠B,∠C的對邊,分別用a,b,:在三角形中,各邊的長和它所對角的正弦的比相等,即 asinA = bsinB = csinC A ...
2024-11-15 05:13
【摘要】正弦余弦定理證明教案【基礎(chǔ)知識精講】、三角形面積公式正弦定理:在一個三角形中,各邊和它所對角的正弦的比相等,并且都等于該三角形外接圓的直徑,即:===2R.面積公式:S△=bcsinA=absinC=acsinB.變形:(1)a=2RsinA,b=2RsinB,c=2RsinC(2)sinA∶sinB∶sinC=a∶b∶c(3)sinA=,sinB=,sinC=.
2025-04-26 04:49
【摘要】第一篇:向量法證明正弦定理[最終版] 向量法證明正弦定理證明a/sinA=b/sinB=c/sinC=2R:任意三角形ABC,⊙,所以∠DAB=90度因為同弧所對的圓周角相等,所以∠D等于∠,△AB...
2024-10-24 16:11
【摘要】第一篇:用向量法證明正弦定理教學(xué)設(shè)計(推薦) 用向量法證明正弦定理教學(xué)設(shè)計 一、教學(xué)目標(biāo) 1、知識與技能:掌握正弦定理的內(nèi)容及其證明方法;會運用正弦定理解決一 些簡單的三角形度量問題。 2、...
2024-11-12 18:00
【摘要】第一篇:正弦定理的背景 正弦定理的背景 在△ABC中,a、b、c為角A、B、C的對邊,R為△ABC的外接圓半徑,則有 稱此定理為正弦定理。 正弦定理是由伊朗著名的天文學(xué)家阿布爾─威發(fā)﹝940-...
2024-10-06 07:15
【摘要】第一篇:正弦定理的說課稿 正弦定理的說課稿 大家好,今天我向大家說課的題目是《正弦定理》。下面我將從以下幾個方面介紹我這堂課的教學(xué)設(shè)計。一教材分析 本節(jié)知識是必修五第一章《解三角形》的第一節(jié)內(nèi)容...
【摘要】例1、如圖,,兩地之間隔著一個水塘,現(xiàn)選擇另一個點,測得,求,兩地之間的距離(精確到1)。ABC182,126,63oCAmCBmACB????ABm(見教材第14頁例2)ABCA
2024-12-12 12:35