【正文】
傾角的增大 , 風(fēng)機(jī)全壓和風(fēng)機(jī)效率 均 會減小。本文對以上的設(shè)計要素分析表明, T35軸流風(fēng)機(jī)最佳的設(shè)計是輪轂比為 ,流型系數(shù)為 ,不適宜采用前傾,應(yīng)該采用的 是 前掠。 關(guān)鍵詞 : 軸流風(fēng)機(jī) ; 設(shè)計要素 ; 數(shù)值模擬;性能 影響 內(nèi) 蒙古工業(yè)大學(xué)碩士學(xué)位論文 Abstract Axial flow fans have extensive application in industry and life, they also consume abundant energy. As our country is under increasing pressure of environmental governance, energy conservation and emission reduction, fan industry focus on the fields which are researching, developing and using highefficiency fan products. The T35 axial flow fan is a kind of ventilation product used for many years in our country, its application range also is very wide, but the existing T35 fan efficiency is still not high. Based on the current situation of inefficient T35 axial flow fan, this article developed the new T35 axial flow fan by using engineering design experience and modern design methods and studied the performance effect of several important design elements for it. Firstly, this article introduced engineering method of axial flow fan pneumatic design especially including vane design, then described the whole machine threedimensional flow field numerical simulation method in conducting fan aerodynamic performance simulation, including numerical modeling, meshing, boundary conditions, convergence criterion and so on, and further discussed the performance calculation results difference of the fan under different numerical modeling, different fan outlet static pressure postprocessing and different boundary condition settings. The numerical simulation results can be pared with the measured results by adopting the appropriate modeling and numerical simulation postprocessing. The whole machine numerical simulation grids of the fan is obtained by grid tests, so it is of important foundation for subsequent discussing performance effect of the T35 axial fan’s design elements. Secondly, the article got a new T35 axial flow fan design prototype on the basis of the existing T35 axial flow fan, meanwhile improved input format, output format and partial experience parameter settings for the existing pneumatic design procedure. The improved procedure not only has the characteristics of highefficiency and flexibility, and it can primely link up subsequent numerical simulation. On the basis through conducting threedimensional numerical simulation of the new T35 axial flow fan, this article studied fan performance effect because of the fan’s design elements such as hub ratio, flow coefficient, forward lean, forward swept and so on. Finally, through the above research, the conclusions are: Firstly, fan pressure increases 內(nèi) 蒙古工業(yè)大學(xué)碩士學(xué)位論文 slightly at first and then decreases with the increase of hub ratio, fan efficiency gradually decreases by and large with the increase of hub ratio. Secondly, fan pressure increases at first and then decreases and increases at last with the increase of flow coefficient, fan efficiency increases at first and then decreases with the increase of flow coefficient. Thirdly, fan pressure and fan efficiency decreases with the increase of forward lean angle. Finally, fan pressure decreases slightly at first and then increases and decreases at last with the increase of forward swept angle, fan efficiency volatility decreases with the increase of forward swept angle. Through the analysis of the above design factors, the conclusions are: the T35 axial flow fan’s best design is that hub ration should be , flow coefficient should be , forward Lean blade is not suitable for it, forward swept blade is suitable for it. The performance of the T35 axial flow fan in the design scheme is better than the old T35 axial flow fan, the results show that total pressure is increased by and total pressure efficiency is increased by %. Key words: Axial flow fan; design elements; Numerical simulation; performance effect 內(nèi) 蒙古工業(yè)大學(xué)碩士學(xué)位論文 目 錄 第一章 緒 論 ............................................................1 研究背景 .........................................................1 國內(nèi)外研究現(xiàn)狀 ..................................................2 國外研究現(xiàn)狀 ...............................................2 國內(nèi)研究現(xiàn)狀 ...............................................3 CFD 的理論基礎(chǔ) ...................................................4 Fluent 的軟件介紹 ..........................................4 CFD 的求解步驟 .............................................4 CFD 的思想及 方法 ...........................................5 本文的研究內(nèi)容及技術(shù)路線 ........................................6 第二章 軸流風(fēng)機(jī)的氣動設(shè)計及數(shù)值模擬 .....................................8 軸流風(fēng)機(jī)簡介 ....................................................8 軸流風(fēng)機(jī)的氣動設(shè)計 ..............................................9 軸流風(fēng)機(jī)的數(shù)值模擬 .............................................13 數(shù)值建模 ..................................................13 幾何模型的簡化 ............................................14 計算域的組成 ..............................................14 網(wǎng)格的劃分 ................................................15 計算方法和邊界條件 ........................................17 數(shù)值模擬的收斂判據(jù) ........................................18 主要參數(shù)計算 ...................................................20 全壓和靜壓的計算 ..........................................20 軸功率的計算 ..............................................21 效率的計算 ................................................22 不同數(shù)值 模擬的結(jié)果對比 .........................................22 不同建模的結(jié)果對比 ........................................22 不同靜壓取值的結(jié)果對比 ....................................24 不同邊界條件的結(jié) 果對比 ....................................24 本章小結(jié) .......................................................25 內(nèi) 蒙古工業(yè)大學(xué)碩士學(xué)位論文 第三章 T35 軸流風(fēng)機(jī)的設(shè)計要素對其性能的影響 ............................ 26 T35 軸流風(fēng)機(jī)的模型建立 ......................................... 26 軸流風(fēng)機(jī)氣動設(shè)計程序的改進(jìn)及葉片參數(shù)的測量 ................ 26 物理模型的建立 ........................................