【正文】
,然后,對(duì)不同攻角下模擬所得到的速度矢量圖進(jìn)行比較分析,得出風(fēng)機(jī)翼型邊界層分離和攻角的關(guān)系。針對(duì)G473風(fēng)機(jī)翼型,利用商業(yè)軟件FLUENT的前期處理工具Gambit建立二維不可壓縮湍流模型,再利用FLUENT對(duì)翼型在36176。流體運(yùn)動(dòng)速度的大小和方向的改變,也會(huì)使得氣體在進(jìn)入葉片入口和從葉輪出來(lái)進(jìn)入壓出室時(shí),流動(dòng)角不等于葉片的安裝角,從而產(chǎn)生沖擊損失,影響風(fēng)機(jī)的效率和性能。二○一○年六月風(fēng)機(jī)翼型邊界層分離的二維數(shù)值模擬研究題 目 畢 業(yè) 設(shè) 計(jì)(論文)`院 系動(dòng)力工程系專業(yè)班級(jí)熱能與動(dòng)力工程專業(yè)0601班學(xué)生姓名李維敬 指導(dǎo)教師王松嶺 華北電力大學(xué)本科畢業(yè)設(shè)計(jì)(論文)風(fēng)機(jī)翼型邊界層分離的二維數(shù)值模擬研究摘要當(dāng)風(fēng)機(jī)工作時(shí),氣體流道的幾何形狀改變會(huì)使流體運(yùn)動(dòng)速度的大小和方向發(fā)生改變,從而產(chǎn)生流動(dòng)分離。流動(dòng)分離產(chǎn)生的沖擊會(huì)造成流動(dòng)損失。由于氣體進(jìn)入葉片入口時(shí)存在著沖擊速度,使氣體在風(fēng)機(jī)葉片的吸力面上形成旋渦,造成邊界層分離現(xiàn)象而會(huì)導(dǎo)致能量損失。到8176。關(guān)鍵詞:風(fēng)機(jī)翼型;邊界層;數(shù)值模擬;攻角THE 2D NUMERICAL SIMULATION OF THE BOUNDARY LAYER SEPARATION ON A WIND TURBINE AIRFOILAbstractWhen the fan working, the gas flow channel geometry will change,which makes the fluid velocity magnitude and direction change resulting flow flow separation will cause the flow change of the fluid velocity magnitude and direction makes the flow angle be not equal to the installation angle when the gas is going into the impeller from the entrance and out from the impeller,resulting in shock shock loss will affect the efficiency and performance of the gas with impact speed imported into the entrance of impeller, it will bring about the vortex on the suction is the reason leading to boundary layer the help of Gambit,a processing tool of FLUENT software,a inpressible turbulence model of a kind of wind turbine airfoil was built. Of course,the specific airfoil of this study is G473. Under the different Angle of Attack,the aerodynamic performance of 2D aerofoil of wind turbine airfoil was simulated and analyzed by using the FLUENT software. The AoA of this study was changed from 36176。. Then pare the speed vector diagrams obtained via the FLUENT software and find out the relation between the boundary layer separation on the wind turbine airfoil and the Angle of Attack.Keywords: Wind turbine airfoil。 Numerical simulation。時(shí)的模擬結(jié)果分析 15 對(duì)不同的攻角時(shí)的模擬結(jié)果分析 17 對(duì)相同大小的正負(fù)攻角的模擬結(jié)果進(jìn)行分析 19結(jié)論 23參考文獻(xiàn) 24致謝 26華北電力大學(xué)本科畢業(yè)設(shè)計(jì)(論文)1 緒論 研究背景及意義 風(fēng)機(jī)是一種裝有多個(gè)葉片的通過(guò)軸旋轉(zhuǎn)推動(dòng)氣流的機(jī)械。風(fēng)機(jī)廣泛應(yīng)用于發(fā)電廠、鍋爐和工業(yè)爐窯的通風(fēng)和引風(fēng),礦井、隧道、冷卻塔、車(chē)輛、船舶和建筑物的通風(fēng)、排塵和冷卻等[1]。此外,風(fēng)機(jī)一直是電站的耗電大戶,電站配備的送風(fēng)機(jī)、引風(fēng)機(jī)和冷煙風(fēng)機(jī)是鍋爐的重要輔機(jī),降低其耗電率是節(jié)能的一項(xiàng)重要措施。因此,盡可能地減少氣體在風(fēng)機(jī)內(nèi)部的能量損失,對(duì)提高風(fēng)機(jī)的效率,降低能耗,保證風(fēng)機(jī)的經(jīng)濟(jì)性、安全性有著十分重要的意義。當(dāng)風(fēng)機(jī)工作時(shí),氣體流道的幾何形狀改變會(huì)使流體運(yùn)動(dòng)速度的大小和方向發(fā)生改變,從而產(chǎn)生流動(dòng)分離。流體運(yùn)動(dòng)速度的大小和方向的改變,也會(huì)使得氣體在進(jìn)入葉片入口和從葉輪出來(lái)進(jìn)入壓出室時(shí),流動(dòng)角不等于葉片的安裝角,從而產(chǎn)生沖擊損失,影響風(fēng)機(jī)的效率和性能。現(xiàn)在,全球?qū)W者都達(dá)成了優(yōu)化葉片的設(shè)計(jì)是提高電廠風(fēng)機(jī)效率,從而節(jié)省能源的一個(gè)有效途徑這個(gè)共識(shí)[5]。2004年大唐唐山熱電有限責(zé)任公司2300 M 機(jī)組鍋爐,風(fēng)機(jī)葉片背面流動(dòng)惡化,層流邊界受到破壞,在葉片背面尾端出現(xiàn)渦流區(qū),此時(shí),風(fēng)機(jī)全壓急劇降低,保護(hù)系統(tǒng)開(kāi)關(guān)動(dòng)作,風(fēng)機(jī)停運(yùn),發(fā)生事故[6]。從局部流動(dòng)特性來(lái)看,機(jī)翼型葉片風(fēng)機(jī)的氣流匹配能力更強(qiáng),氣動(dòng)損失更小,因此,其穩(wěn)定工作范圍也較寬,具有優(yōu)良的氣動(dòng)和變工況性能,尤其是電站鍋爐負(fù)荷受各方面的影響經(jīng)常發(fā)生變化,與之匹配的風(fēng)機(jī)風(fēng)量也要隨之改變,為了適應(yīng)電站鍋爐阻力變化小,而風(fēng)量變化要求較大的特點(diǎn),在選用離心通風(fēng)機(jī)時(shí),一般首先選用機(jī)翼型葉輪。運(yùn)用FLUENT數(shù)值計(jì)算軟件,對(duì)翼型流動(dòng)進(jìn)行二維數(shù)值模擬,對(duì)不同沖角下的流動(dòng)情況進(jìn)行詳細(xì)的研究,找出沖角與分離點(diǎn)位置的關(guān)系,對(duì)預(yù)測(cè)風(fēng)機(jī)安全經(jīng)濟(jì)運(yùn)行范圍和風(fēng)機(jī)的高效可靠運(yùn)行具有重要的指導(dǎo)意義。分別同比增長(zhǎng)121%、114%,預(yù)計(jì)2008年市場(chǎng)需求還將遠(yuǎn)遠(yuǎn)超出預(yù)期,國(guó)產(chǎn)設(shè)備的新裝機(jī)容量年增長(zhǎng)速度為60%70%[9]。因此,中國(guó)應(yīng)該不斷提高風(fēng)機(jī)產(chǎn)品質(zhì)量、穩(wěn)定市場(chǎng)需求,還要積極引進(jìn)先進(jìn)技術(shù),提高技術(shù)開(kāi)發(fā)能力。因此,如何能以科技為基礎(chǔ),發(fā)展、優(yōu)化風(fēng)機(jī),從而提高其性能,降低經(jīng)濟(jì)損失,并將其轉(zhuǎn)化為效益成為一個(gè)十分重要的課題?,F(xiàn)代風(fēng)機(jī)特點(diǎn)是轉(zhuǎn)速高,壓力大,葉輪流道窄,線速度高,葉輪所受傳動(dòng)扭的矩大,受力狀態(tài)復(fù)雜且大,這要求葉輪制造有很高的精度[12],因此對(duì)葉輪葉片的研究和設(shè)計(jì)是風(fēng)力發(fā)電技術(shù)研究和開(kāi)發(fā)的重要任務(wù)。發(fā)達(dá)國(guó)家從20世紀(jì)80年代中期開(kāi)始研究風(fēng)機(jī)新翼型,并發(fā)展了各自的翼型系列。一些設(shè)計(jì)和制機(jī)專利都是從國(guó)外引進(jìn)的,嚴(yán)重制約了我國(guó)風(fēng)機(jī)產(chǎn)業(yè)的發(fā)展。西華大學(xué)能源與環(huán)境學(xué)院的黃華,張禮達(dá)[14]基于翼型理論和線性動(dòng)量理論對(duì)葉片翼型截面升力公式的計(jì)算,導(dǎo)出對(duì)非設(shè)計(jì)工況來(lái)流角計(jì)算的迭代式。 傳統(tǒng)風(fēng)機(jī)設(shè)計(jì)是以實(shí)驗(yàn)為基礎(chǔ)的設(shè)計(jì),通過(guò)反復(fù)的設(shè)計(jì)計(jì)算和實(shí)驗(yàn)來(lái)確定最終設(shè)計(jì)改進(jìn)方案,設(shè)計(jì)周期長(zhǎng),費(fèi)用也較高,對(duì)經(jīng)驗(yàn)的依賴性較強(qiáng),而USED技術(shù)已經(jīng)改變了工程設(shè)計(jì)方法,它是一個(gè)用于分析流體現(xiàn)象和減少設(shè)計(jì)時(shí)間的有力工具[15]。風(fēng)機(jī)葉片翼型設(shè)計(jì)理論是決定風(fēng)機(jī)功率特性和載荷特性的根本因素,一直是各國(guó)學(xué)者研究的熱點(diǎn)。新翼型的設(shè)計(jì)也是基于原有的翼型坐標(biāo),對(duì)其進(jìn)行局部的調(diào)整,以獲得性能更為優(yōu)越的翼型。2008年遼寧工程技術(shù)大學(xué)機(jī)械工程學(xué)院李文華,范興文[17]。通過(guò)模擬發(fā)現(xiàn)了蝸舌對(duì)葉輪中流動(dòng)的影響和部分空氣在葉輪中的螺旋狀流動(dòng),捕捉到了離心通風(fēng)機(jī)內(nèi)部