【正文】
..... 8 平臺參數 ........................................................ 8 坐標求解 ........................................................ 8 系統(tǒng)質心運動規(guī)律與控制點運動規(guī)律 ................................... 12 轉臺位置反解 ....................................................... 13 本章小結 ........................................................... 13 3 基于 MATLAB/SIMULINK 運動學仿真 ......................................... 14 系統(tǒng)模型 ........................................................... 14 系統(tǒng)工作范圍確定 ................................................... 15 模擬仿真 ........................................................... 16 實驗參數 ....................................................... 16 仿真結果 ....................................................... 16 仿真結論 ....................................................... 17 漸入漸出 ........................................................... 17 系統(tǒng)啟動 ....................................................... 17 給入信號 ....................................................... 19 本章小結 ........................................................... 20 4 實驗研究 ............................................................... 21 XPC 基本概念簡介 .................................................... 21 xPC 目標概念 ................................................... 21 xPC 目標的特點 ................................................. 21 XPC 目標的軟件環(huán)境特征 .............................................. 21 實時內核 ....................................................... 23 信號的采集和分析功能 ........................................... 23 參數調節(jié)功能 ................................................... 23 XPC 目標的硬件環(huán)境 .................................................. 24 主機 PC ........................................................ 24 目錄 目標 PC ........................................................ 24 HostTarget 連接 ............................................... 24 I/O 驅動的支持 ................................................. 25 控制系統(tǒng)模型完善和實時仿真 ......................................... 25 仿真模型修改 ................................................... 25 創(chuàng)建目標應用程序 ............................................... 26 實時控制實驗及數據分析 ............................................. 27 實時控制實驗 ................................................... 27 實驗結論 ....................................................... 33 本章小結 ........................................................... 33 5 總結 ................................................................... 34 機械設計制造及其自動化專業(yè) 2022 級畢業(yè)設計論文并聯(lián)機器人控制系統(tǒng)設計與實驗1 緒論 課題研究的目的和意義并聯(lián)六自由度轉臺是具有重大經濟價值和國防戰(zhàn)略意義的高精尖實驗設備。 position reverse solution。通過對比實時控制實驗數據與仿真實驗數據,由數據重合度高可得到該算法以及此算法上搭建的控制系統(tǒng)能夠用于實際的并聯(lián)機器人的控制。運用此目標應用程序進行實時仿真和實時控制實驗,并在此實驗的基礎上記錄分析實驗數據,通過對比實時控制實驗數據與仿真實驗數據,數據重合度高,從而驗證算法的可行性。最后,運用 MATLAB/xPC 進行實時控制。并且通過仿真初步驗證反解方程的正確性。其次,通過 MATLAB /Simulink 將方程搭建出來進行系統(tǒng)仿真。學校代碼: 10151 論文成績: 學生學號:2220223653 大 連 海 事 大 學畢 業(yè) 論 文 二○一○年 六月 并聯(lián)機器人控制系統(tǒng)設計與實驗研究專業(yè)班級:機械設計制造及其自動化 姓 名:黃鑫 指導教師:關廣豐 交通與物流工程學院中文摘要內容摘要本論文主要研究六自由度平臺的位置反解,通過仿真實驗和在 xPC 環(huán)境下的實時控制實驗來驗證算法的可行性。首先,采用矩陣分析方法,推出了體坐標系與靜坐標系之間的變換矩陣及其液壓缸上下鉸支點的坐標向量矩陣,由此確立了轉臺液壓缸長度變換與上臺面位置的關系,從而解決了六自由度轉臺機構的位置反解。運用 Simulink 中的模塊將位置反解方程搭建出來,通過計算機模擬仿真,由用戶給定的位姿求解出缸長變換。同時考慮到一定得實際情況,為使信號平穩(wěn)的輸入,使平臺平穩(wěn)的升到中位,加入漸縮漸放模塊,以達到預期的效果。以 Simulink 搭建出來的模型為基礎,生成能夠進行實時控制的目標應用程序。論文研究了控制并聯(lián)機器人的核心算法。關鍵詞:六自由度平臺 位置反解 仿真模型 實時控制英文摘要AbstractThis paper mainly studies the control of 6 DOF platform. The feasibility of the algorithm is to be verified by the simulation experiments and the realtime control experiments in xPC environment.Firstly, the coordinatetransformation matrix between static coordinate system and body coordinate system can be gotten by the matrix analysis method, and also the coordinate matrix of the rounded support can be gotten. The equations of position reverse solution of the 6 DOF platform can be established through making sure of the relationship between the change of the hydraulic cylinder length and the position of the platform. Secondly, a Simulink Model is be created by using the MATLAB /Simulink. Through the puter simulation, the change of the hydraulic cylinder length can be solved by the position and orientation given by the user. Then make sure whether the equations of position reverse solution is correct or not by simulating the Simulink Model. The module of rate limiter is added into the simulink Model in order to input the signal smoothly. Finally, the platform is controlled in real time by xPC. The xPC target application which can be put into use in the real time control is based on the Simulink Model. Through the parison with experimental data in realtime control and simulation experimental data, the feasibility of the algorithm can be verified.This papar studies the core part of the parallel link robot. Through the parison with experimental data in realtime control and simulation experimental data, the feasibility of the algorithm can be verified, and the control system which is based on the algorithm can be used in the control