freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

蟻群算法的改進(jìn)研究與應(yīng)用碩士學(xué)位論文-展示頁

2025-06-28 05:22本頁面
  

【正文】 優(yōu)化的結(jié)果。2. 簡要介紹了蟻群算法的基本原理、算法步驟及流程,最后分析了算法的優(yōu)缺點等。新算法應(yīng)用于旅行商及路徑規(guī)劃問題,新算法的優(yōu)越性得到了驗證。根據(jù)蟻群算法的特點,本文提出了基于目標(biāo)函數(shù)梯度的模擬退火蟻群算法和夾角優(yōu)化的蟻群算法。從理論上講,適當(dāng)轉(zhuǎn)換后改進(jìn)的蟻群算法可以使任何組合優(yōu)化問題得到更快地解決。(保密的學(xué)位論文在解密后適用本授權(quán)書)學(xué)位論文作者簽名: 簽字日期: 年 月 日導(dǎo)師簽名: 簽字日期: 年 月 日 摘要摘 要蟻群優(yōu)化算法是一種群體智能算法,是自然界中螞蟻群落在尋找食物過程的模擬,是一種新興的智能進(jìn)化算法,是專門解決離散的棘手的問題,在許多應(yīng)用中,充分展示了其優(yōu)點,在算法的改進(jìn)方面也取得了很好的成果。學(xué)校有權(quán)保留并向國家有關(guān)部門或機(jī)構(gòu)送交論文的復(fù)印件和磁盤,允許論文被查閱和借閱。與我一同工作的同志對本研究所做的任何貢獻(xiàn)均已在論文中作了明確的說明并表示謝意。中圖分類號: O224 論文編號: 學(xué)科分類號: 密  級: 公 開 安徽理工大學(xué)碩 士 學(xué) 位 論 文蟻群算法的改進(jìn)研究與應(yīng)用作者姓名: 弓 英 瑛 專業(yè)名稱: 應(yīng) 用 數(shù) 學(xué) 研究方向: 優(yōu)化理論與應(yīng)用 導(dǎo)師姓名: 許 峰 教 授 導(dǎo)師單位:安徽理工大學(xué)理學(xué)院答辯委員會主席: 論文答辯日期: 年 月 日安徽理工大學(xué)研究生處 年 月 日A Dissertation in Applied MathematicsResearch and Application of Improved Ant Colony AlgorithmCandidate:Gong Yingying Supervisor:Xu FengSchool of ScienceAnhui University of Science and Technology, Shungeng Road, Huainan, 232001, 獨 創(chuàng) 性 聲 明本人聲明所呈交的學(xué)位論文是本人在導(dǎo)師指導(dǎo)下進(jìn)行的研究工作及取得的研究成果。據(jù)我所知,除了文中特別加以標(biāo)注和致謝的地方以外,論文中不包含其他人已經(jīng)發(fā)表或撰寫過的研究成果,也不包含為獲得 安徽理工大學(xué) 或其他教育機(jī)構(gòu)的學(xué)位或證書而使用過的材料。學(xué)位論文作者簽名:___________ 日期: 年 月 日學(xué)位論文版權(quán)使用授權(quán)書本學(xué)位論文作者完全了解 安徽理工大學(xué) 有保留、使用學(xué)位論文的規(guī)定,即:研究生在校攻讀學(xué)位期間論文工作的知識產(chǎn)權(quán)單位屬于 安徽理工大學(xué) 。本人授權(quán)安徽理工大學(xué)可以將學(xué)位論文的全部或部分內(nèi)容編入有關(guān)數(shù)據(jù)庫進(jìn)行檢索,可以采用影印、縮印或掃描等復(fù)制手段保存、匯編學(xué)位論文。與積極的反饋、自組織、分布式、強(qiáng)健、易與其他算法相結(jié)合的優(yōu)勢,蟻群算法往往陷入局部最優(yōu)解,收斂速度慢,對初始解的要求比較高。本文在蟻群算法和模擬退火算法的基礎(chǔ)上對他們進(jìn)行混合改進(jìn),并考慮目標(biāo)函數(shù)梯度的因素,促使算法快速全局收斂;另外,在夾角優(yōu)化方面也作了相關(guān)改進(jìn),考慮方向夾角對算法的影響程度,都得到了很好的結(jié)果。數(shù)值分析和實驗表明:改進(jìn)的新算法不僅具有原算法的優(yōu)點,而且提高了算法的速度。本文所做工作如下:1. 簡要介紹了蟻群算法的產(chǎn)生背景意義及研究現(xiàn)狀,歸納論文所研究的內(nèi)容與意義。3. 首先簡要介紹了模擬退火算法的基本原理和算法的過程,然后介紹了一種基于目標(biāo)函數(shù)的梯度模擬退火蟻群算法的基本原理和算法流程,最后給出新算法對問題優(yōu)化的實驗結(jié)果。圖 13 表 1參 33關(guān)鍵詞:蟻群算法;模擬退火算法;梯度;夾角優(yōu)化分類號:O224IAbstractAbstractAnt colony algorithm is a kind of swarm intelligence optimization algorithm. It is a new intelligent evolutionary algorithm which is a similar to the process of ant munities in search of food in nature. And it is an ideal method for solving difficult discrete problems. It fully demonstrated its advantages in many applications and obtained good results in terms of improved colony algorithm has the advantage of positive feedback, selforganization, distributed, robust, easy to bine with other algorithms. But often trapped in local optimal solution, convergence is slow, the initial solution is relatively high. Theoretically, It will more quickly resolve any binatorial optimization problems, if the ant colony algorithm to make the appropriate changes. This article has been improved on hybrid ant colony algorithm and simulated annealing algorithm bines. It takes into account the objective function gradient of this factor so that global convergence to getting better. In addition, It also made related improvements in the angle optimization. For example, it takes into account the influence of the angle between the direction of the algorithm and the results have been very good.This paper put forward algorithm which is simulated annealing and ant colony hybrid algorithm based on the gradient of objective function and ant colony algorithm in the angle numerical analysis and experiment show that the improved new algorithm not only possesses the advantages of the original algorithm, but also improve the running speed of the algorithm. Applied to the problem of TSP and path planning, The superiority of the new algorithm is verified.The paper contains following tasks:1. This paper briefly introduces the background and significance of research status of ant colony algorithm, and it also describes the content and significance of the study.2. Briefly introduces the basic principles of ant colony algorithm flow algorithm, it also introduces the advantages and disadvantages of the algorithm and so on.3. First introduces the basic principle and algorithm flow of simulated annealing algorithm, Then introduces the basic principles and the algorithm flow of simulated annealing and ant colony hybrid algorithm based on the gradient of objective function, Finally, we gave the experimental results on the new algorithm for solving problems of the TSP .4. First, a brief introduction path planning problem, Then introduces the basic principles and the algorithm flow of ant colony algorithm in the angle optimization, Finally, we gave the experimental results on the new algorithm for solving problems of the path planning. Figure 13 table 1 reference 33 Keywords: ant colony algorithm, simulated annealing algorithm, gradient, angle optimizationChinese books catalog: O224IX目錄目 錄摘 要 IAbstract II插圖或附表清單 VIII引 言 IX1緒 論 1 蟻群算法生成背景和意義 1 蟻群算法的研究現(xiàn)狀 1 論文的研究意義和內(nèi)容 2 論文的研究意義 2 論文的主要內(nèi)容 22 蟻群算法的原理及過程 4 蟻群算法的基本原理 4 蟻群算法的算法流程 6 蟻群算法的優(yōu)缺點 93基于目標(biāo)函數(shù)梯度的模擬退火蟻群算法 11 模擬退火算法的基本原理和算法流程 11 基于目標(biāo)函數(shù)梯度的模擬退火蟻群算法 12 混合算法的基本原理 12
點擊復(fù)制文檔內(nèi)容
環(huán)評公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1