【摘要】12+1支持向量機(jī)(SVM)網(wǎng)絡(luò)12+2?最優(yōu)線性分界面(二分類問題)–對線性可分集,總能找到使樣本正確劃分的分界面,而且有無窮多個(gè),哪個(gè)是最優(yōu)的?–一種最優(yōu)的分界準(zhǔn)則(從對樣本及參數(shù)的魯棒性看)是使兩類模式向量分開的間隔最大。支持向量機(jī)12+3?最優(yōu)線性分界面的確定–兩分類的線性判別函數(shù)的一
2025-01-13 16:17
【摘要】121反向傳播算法的變形122BP算法的缺點(diǎn)?算法的收斂速度很慢?可能有多個(gè)局部極小點(diǎn)?BP網(wǎng)絡(luò)的隱層神經(jīng)元個(gè)數(shù)的選取尚無理論上的指導(dǎo),而是根據(jù)經(jīng)驗(yàn)選取?BP網(wǎng)絡(luò)是一個(gè)前向網(wǎng)絡(luò),具有非線性映射能力,但較之非線性動(dòng)力學(xué)系統(tǒng),功能上有其局限性123BP算法的變形?啟發(fā)式改進(jìn)–動(dòng)量
【摘要】第7章典型神經(jīng)網(wǎng)絡(luò)BPBP網(wǎng)絡(luò)是一種單向傳播的多層前向網(wǎng)絡(luò),其神經(jīng)元的變換函數(shù)是S型函數(shù),因此輸出量為0到1之間的連續(xù)量,它可以實(shí)現(xiàn)從輸入到輸出的任意的非線性映射。由于其權(quán)值的調(diào)整采用反向傳播(Backpropagation)的學(xué)習(xí)算法,因此被稱為BP網(wǎng)絡(luò),思想是梯度
2025-01-14 02:54
【摘要】第4章BP網(wǎng)絡(luò) ?主要內(nèi)容: ?BP網(wǎng)絡(luò)的構(gòu)成 ?隱藏層權(quán)的調(diào)整分析 ?Delta規(guī)那么理論推導(dǎo) ?算法的收斂速度及其改進(jìn)討論 ?BP網(wǎng)絡(luò)中的幾個(gè)重要問題 ?重點(diǎn):BP算法 ?難點(diǎn):D...
2024-09-30 18:59
【摘要】第五章自組織競爭型神經(jīng)網(wǎng)絡(luò)???(ART)?BP網(wǎng)絡(luò)雖已得到廣泛應(yīng)用,然而,它在構(gòu)成網(wǎng)絡(luò)時(shí)未能充分借鑒人腦工作的特點(diǎn),因而其功能有許多不足之處:?對比之下,人腦的優(yōu)越性就極其明顯了。人的大腦是一個(gè)龐大、復(fù)雜的神經(jīng)網(wǎng)絡(luò)系統(tǒng),它不僅可以記憶來自外界的各種信息,即具有可塑性,而且還可以將新、舊信息保存下來,即具有穩(wěn)定性。人的腦神經(jīng)系統(tǒng)
2025-02-14 21:14
【摘要】2022/2/1神經(jīng)網(wǎng)絡(luò)原理與應(yīng)用1回歸神經(jīng)網(wǎng)絡(luò)(recurrentneuralworks)?回歸網(wǎng)絡(luò)是一種人們越來越感興趣的網(wǎng)絡(luò)。?回歸網(wǎng)絡(luò)中包含一定的動(dòng)態(tài)環(huán)節(jié)作為信息存儲(chǔ),在系統(tǒng)建模時(shí)可以充分利用這一特性,減小網(wǎng)絡(luò)的規(guī)模。?回歸網(wǎng)絡(luò)包括Elman網(wǎng)絡(luò)和Hopfield網(wǎng)絡(luò),其中Elman網(wǎng)絡(luò)是一種兩層的前饋網(wǎng)絡(luò)20
2025-01-13 14:42
【摘要】神經(jīng)網(wǎng)絡(luò)控制電信學(xué)院周強(qiáng)第一章引言人工神經(jīng)網(wǎng)絡(luò)的簡介人工神經(jīng)網(wǎng)絡(luò)的發(fā)展歷史人工神經(jīng)元的模型人工神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)與學(xué)習(xí)規(guī)則人工神經(jīng)網(wǎng)絡(luò)的應(yīng)用人工神經(jīng)網(wǎng)絡(luò)的簡介人工神經(jīng)網(wǎng)絡(luò)(ArtificialNeuralNetwork,ANN)即,神經(jīng)網(wǎng)絡(luò)(NeuralNetwor
2025-01-17 05:15
【摘要】人工神經(jīng)網(wǎng)絡(luò)及其應(yīng)用第4講BP神經(jīng)網(wǎng)絡(luò)何建華電信系,華中科技大學(xué)2022年2月28日2022/2/12一、內(nèi)容回顧二、BP網(wǎng)絡(luò)三、網(wǎng)絡(luò)設(shè)計(jì)四、改進(jìn)BP網(wǎng)絡(luò)五、內(nèi)容小結(jié)內(nèi)容安排2022/2/13一、內(nèi)容回顧
2025-01-17 01:10
【摘要】人工神經(jīng)網(wǎng)絡(luò)及其應(yīng)用第4講BP神經(jīng)網(wǎng)絡(luò)何建華電信系,華中科技大學(xué)2020年2月28日2020/11/232一、內(nèi)容回顧二、BP網(wǎng)絡(luò)三、網(wǎng)絡(luò)設(shè)計(jì)四、改進(jìn)BP網(wǎng)絡(luò)五、內(nèi)容小結(jié)內(nèi)容安排2020/11/233一、內(nèi)容回顧
2024-10-29 20:05
【摘要】11/1/2024,1,第4章BP網(wǎng)絡(luò)(wǎngluò),主要內(nèi)容:BP網(wǎng)絡(luò)的構(gòu)成隱藏層權(quán)的調(diào)整分析Delta規(guī)則理論推導(dǎo)算法的收斂速度(sùdù)及其改進(jìn)討論BP網(wǎng)絡(luò)中的幾個(gè)重要問題重點(diǎn):BP算法難...
2024-11-01 12:02
【摘要】MATLAB神經(jīng)網(wǎng)絡(luò)工具箱介紹及實(shí)驗(yàn)要求神經(jīng)元模型NeuronModel:多輸入,單輸出,帶偏置?輸入:R維列向量1[,]TRpp?p?權(quán)值:R維行向量111[,]Rww?wb閾值:標(biāo)量?求和單元11Riiinpwb?????傳遞函數(shù)f?輸出(
2025-06-03 22:54
【摘要】神經(jīng)網(wǎng)絡(luò)?神經(jīng)網(wǎng)絡(luò)的概念泛指生物神經(jīng)網(wǎng)絡(luò)與人工神經(jīng)網(wǎng)絡(luò)?生物神經(jīng)網(wǎng)絡(luò)由中樞神經(jīng)系統(tǒng)(腦和脊髓)及周圍神經(jīng)系統(tǒng)(感覺、運(yùn)動(dòng)、交感等)所構(gòu)成的錯(cuò)綜復(fù)雜的神經(jīng)網(wǎng)絡(luò),最重要的是腦神經(jīng)系統(tǒng)。?人工神經(jīng)網(wǎng)絡(luò)(ANN)由大量簡單的處理單元廣泛地互相連接而形成地復(fù)雜網(wǎng)絡(luò)系統(tǒng),以簡化,抽象,和模擬人腦神經(jīng)網(wǎng)絡(luò)。概述概述
2025-01-13 15:18
【摘要】NeuroSolutions類神經(jīng)網(wǎng)路模擬介紹決策分析研究室何謂類神經(jīng)網(wǎng)路類神經(jīng)網(wǎng)路的靈感源自於腦神經(jīng)學(xué),其基本概念是希望透過模擬人腦結(jié)構(gòu)的方式來建立新一代的電腦處理模式。(中山大學(xué)機(jī)電系嚴(yán)成文教授)運(yùn)用電腦(軟、硬體)來模擬生物大腦神經(jīng)的人工智慧系統(tǒng),並將此應(yīng)用於辨識(shí)、決策、控制、預(yù)測,???等等。(真理大學(xué)
2025-06-03 22:58
【摘要】人工神經(jīng)網(wǎng)絡(luò)ArtificialNeuralNetwork機(jī)自1003人工神經(jīng)網(wǎng)絡(luò)的基本概念:定義:人工神經(jīng)網(wǎng)絡(luò)是由具有適應(yīng)性的簡單單元組成的廣泛并行互連的網(wǎng)絡(luò),它的組織能夠模擬生物神經(jīng)系統(tǒng)對真實(shí)世界物體所作出的交互反應(yīng)。它的
2025-08-02 21:58
【摘要】ConvolutionalNeuralNetworks卷積神經(jīng)網(wǎng)絡(luò)楊皓軒主要內(nèi)容1.卷積神經(jīng)網(wǎng)絡(luò)—誕生背景與歷程2.卷積神經(jīng)網(wǎng)絡(luò)應(yīng)用—LeNet-5手寫數(shù)字識(shí)別3.深度學(xué)習(xí)—Hinton做了些什么4.深度學(xué)習(xí)在數(shù)字圖像識(shí)別上的運(yùn)用—Hinton如何在2022年ImageN
2024-08-31 00:28