freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

介質(zhì)靜電場ppt課件-展示頁

2025-01-23 06:11本頁面
  

【正文】 35 靜電場能量 電場能量密度 2 本章導(dǎo)讀 研究對象 : 仍然是靜電場,場量仍然是: 基本性質(zhì)方程 討論靜電場對導(dǎo)體和電介質(zhì)的作用以及后者對前者的影響 UE、?0??? ?? iiSqSdE?? 0???LldE ??論述的根據(jù)是靜電場的 基本規(guī)律 和導(dǎo)體與電介質(zhì)的 電結(jié)構(gòu) 特征 。 導(dǎo)體靜電平衡的條件 導(dǎo)體內(nèi)部和表面均無自由電荷的定向移動, —— 導(dǎo)體處于 靜電平衡狀態(tài) 。 證:在導(dǎo)體上任取兩點 a和 b 導(dǎo)體等勢是導(dǎo)體體內(nèi)電場強度處處為零的必然結(jié)果 靜電平衡條件的另一種表述 abl?d 導(dǎo)體的電勢 5 金屬球放入前電場為一均勻場 金屬球放入后電力線發(fā)生彎曲電場為一非均勻場 E?E?金屬導(dǎo)體放入均勻場前 0?內(nèi)E6 由導(dǎo)體的靜電平衡條件和靜電場的基本性質(zhì),可以得出導(dǎo)體上的電荷分布。 0?內(nèi)EdV7 導(dǎo)體表面電荷 ),( zyx?),( zyxE 表?? ?S SdE ??? ??? ?????dSSdSSdESdE ???? 表dSE 表?0?? dS?0???表E設(shè)導(dǎo)體表面電荷面密度為 相應(yīng)的電場強度為 設(shè) P 是導(dǎo)體外 緊靠 導(dǎo)體表面的一點 nE ?0???表?寫作 :外法線方向 n?Ps?dS8 opP ?? 1??點:?P 1?2?+ + + + + + + + A 例 一無限大均勻帶電平面(面、密度為 σ2 ), 其附近一導(dǎo)體處于靜電平衡,導(dǎo)體上一面積元 (面電荷密度為 σ1 )附近一點 P,求 P點的 E. 9 孤立帶電導(dǎo)體表面電荷分布 尖端放電 孤立帶電導(dǎo)體球 孤立導(dǎo)體 c??一般情況較復(fù)雜; 孤立的帶電導(dǎo)體,電荷分布的實驗定性: 在表面凸出的尖銳部分 (曲率是正值且較大 )電荷面密度較大, 在比較平坦部分 (曲率較小 )電荷面密度較小, 在表面凹進部分帶電面密度最小。 熒光質(zhì) 導(dǎo)電膜 + 高壓 eH接真空泵或充氦氣設(shè)備 金屬尖端 接地 11 FIM image of pure Al at 7kV and 15K Oxford大學(xué)的幾個圖片 FIM image of W containing two grain boundaries 歷史上首次能看到原子的顯微鏡是場離子顯微鏡( FIM),它是米勒( Erwin W. M 252。 只能探測在半徑小于 100nm的針尖上的原子結(jié)構(gòu)和二維幾何性質(zhì),且制樣技術(shù)復(fù)雜。 證明 : 與等勢矛盾 0???S sdE ?? 0??i iq在導(dǎo)體殼內(nèi)緊貼內(nèi)表面作高斯面 S 高斯定理 0?內(nèi)表面Q若內(nèi)表面有一部分是正電荷 一部分是負(fù)電荷 則會從正電荷向負(fù)電荷發(fā)電力線 證明了上述兩個結(jié)論。 腔體內(nèi)表面所帶的電量和腔內(nèi)帶電體所帶的電量等量異號, 電量分布 qQ ??腔內(nèi)表面?q用高斯定理可證 腔內(nèi)的電場 1)與電量 q有關(guān); 2)與腔內(nèi)帶電體、幾何因素、介質(zhì)有關(guān)。 14 靜電屏蔽 [E感生 +EQ ]外表面以內(nèi)空間 = 0 當(dāng) Q大小或位置改變時 ,q?(感應(yīng)電荷 ) 將自動調(diào)整 , 保證上述關(guān)系成立 。 如圖 , 空腔內(nèi)表面電荷均勻分布 (q在球心 ), Q的變化 ,不會影響內(nèi)表面電荷分布 。 ? Q + + + q? 腔內(nèi)帶電體位置的移動,不影響腔外電場 ,但 q大小變化時,將影響腔外電場。 + + + + q q? 這種使導(dǎo)體空腔內(nèi)的電場不受外界影響或利用接地的空腔導(dǎo)體將腔內(nèi)帶電體對外界影響隔絕的現(xiàn)象 , 稱為靜電屏蔽。 求 :導(dǎo)體上感應(yīng)電荷的電量。 ?P21 ?? ??022202010??? ???????? 211 ?? ?? 212 ?解 :設(shè)金屬板面電荷密度為 ?1和 ?2 1?由對稱性和電量守恒 導(dǎo)體體內(nèi)任一點 P場強為零 x02??012??022??2?20 求 :1)球 A和殼 B的電量分布 , 2)球 A和殼 B的電勢 UA、 UB 。 殼 B有兩個表面,電量可能分布在內(nèi)、外兩個表面。 例:金屬球 A與金屬球殼 B 同心放置 ,已知球 A半徑為 R0,帶電為 q;金屬殼 B 內(nèi)外半徑分別為 R1, R2,帶電為 Q。 ABqQ0R2R1R21 球 A均勻分布著電量 q 殼 B上電量的分布: 由高斯定理和電量守恒 相當(dāng)于一個均勻帶電的球面 在 B內(nèi)緊貼內(nèi)表面作高斯面 S 0???S sdE ??高斯定理 0??i iq qQ B ??內(nèi)電荷守恒定律 q B ??外ABq0R2R1RSq?qQ?22 202200 444 RqQRqRqUA ???????????204 RqQUB ????等效 :在真空中三個均勻帶電的球面 利用疊加原理 2)球 A和殼 B 的電勢 UA、 UB 。 132 電介質(zhì)的極化 電極化強度 一、 電極化 在外電場作用下,電介質(zhì)表面出現(xiàn)凈電荷從而產(chǎn)生附加電場的現(xiàn)象稱為電介質(zhì)的極化 24 有極分子 +– lqp?? ?下圖是一些無極分子(氦、甲烷)和有極分子(氯化氫、水)的示意圖 + – 無極分子 二、 電極化的微觀機理 25 無外場時: 有極分子 0???VP?有電場時 EPM ??? ??極性 (有極 )分子介質(zhì) 取向 極化 0???VP?26 無外場時: 無極分子 0???VP?非極性 (無極 )分子介質(zhì) 位移 極化 0??? VP?有電場時 27 0E??– ?– ?– ?– ?– ?– ?– ?– ?–
點擊復(fù)制文檔內(nèi)容
教學(xué)課件相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1