【正文】
裝。 Windows 圖形界面直觀,易于使用。所有顯示的信息都來自經(jīng)由 RS 485接口或 RS 232串口連接的傳感器。參數(shù)可以被用戶通過以下方面來改變輸入: ?繼電器觸點可設定為 NO (常開)或數(shù)控(通常關(guān)閉)。 ?溫度單位可以改變由攝氏度至華氏度,反之亦然。 ?激光(如傳感器配有激光瞄準)可以開啟或關(guān)閉。 ?發(fā)射率( 1 色)或斜率(兩色)比熱值可設定。 ?信號處理定義的溫度參數(shù)返回,平均返回一個對象的平均氣溫在一段時間內(nèi) 。 ?音響報警 /勞報警可設定警告不當溫度的變化,在一些過程線,這可能是引發(fā)打破在一個產(chǎn)品或故障加熱器或冷卻器的內(nèi)容。 95%以上可以默默無聞的觸發(fā)一個自動關(guān) 機的進程。 紅外溫度傳感器可以看到監(jiān)控產(chǎn)品的各種熱工前后和干燥前后的溫度。各地的傳感器測量的溫度都可以以調(diào)查的數(shù)據(jù)單獨或季度的繪制成圖表,便于監(jiān)測和溫度數(shù)據(jù)過程的存檔。 遠程在線尋址 在一個持續(xù)的和圖 2相似的過 程,智能傳感器可以連接到一個或其他顯示器。該傳感器可安排在多點或點對點配置,或者只是簡單的獨立。每個傳感器都擁有自己的“地址”,允許它分別設定不同的操作參數(shù)。有些程序使用 RS 232接口通信,但電纜的長度限制到 100英尺。在這種類型的安裝,數(shù)字通信可結(jié)合毫安電流回路作為一個完整的全方位的進程通信軟件包。一個壁紙制造商可能需要一系列的傳感器編程來檢查休息和眼淚沿著整個新聞界和涂層運行,但每個地區(qū)都有不同的環(huán)境和地表溫度,如果發(fā)現(xiàn)表面的不正?,F(xiàn)象,每個傳感器必須觸發(fā)警報。這些自定義程序可以 遠程在飛蟲身上安裝傳感器而不用關(guān)閉生產(chǎn)線。簡單易于使用的數(shù)據(jù)采集、配置和實用程序通常是智能傳感器套件購買時的一部分,或自定義的軟件都可以使用。新的參數(shù)直接下載到傳感器的電路和傳感器的當前參數(shù)被保存和存儲為計算機數(shù)據(jù)文件,以確保完整記錄校準和 /或參數(shù)的變化保留。這個偏移將適用于所有溫度在整個溫度范圍內(nèi)工作。 F,智能傳感器或一系列的傳感器,都可以校準那個溫度。這種技術(shù)使用校準溫度來計算增益和偏移是適用于所有在整個溫度范圍內(nèi)的溫度。這種技術(shù)使用校準溫度計算兩個收益和兩個偏移。三點校準和多單雙點相比不太常見,但偶爾制造商需要執(zhí)行此技術(shù),以滿足特定的標準。結(jié)果讓工藝工程師知道傳感器的效果最佳,并在其做出一些必要的故障排除更加容易。他們現(xiàn)在可以配置盡可 能多的傳感器來滿足他們特殊控制過程的需要并且延長這些傳感器壽命,遠遠超出先前的“不聰明”的設計。通過盡可能的監(jiān)測設備和微調(diào)溫度變量而無需關(guān)閉的進程,工程師們可以保持高效率的過程和提供高質(zhì)量的產(chǎn)品。 紅外線( IR )輻射是電磁波譜,其中包括無線電波、微波、可見光和紫外線,以及伽馬射線和 X 射線。紅外波長通常以微米表示并且光譜范圍由 1000微米,只有 。因為每一個對象(除黑體)排放量的最佳紅外能量在某一特定點沿線的紅外波段,每個過程可能需要獨特的傳感器模型與具體的光學和探測器類型。一個傳感器設在 5微米是用來衡量玻璃表面。更廣泛的光譜范圍內(nèi)用來衡量溫度較低的表面,如紙、紙 板、聚、和鋁箔復合材料。它是發(fā)出能量,以目標發(fā)射率來測量,那表明了一個物體的溫度。紅外傳感器具有可調(diào)發(fā)射率設定,通常是從 ,使準確的測量的幾個表面類型的溫度。然后探測器的紅外能量轉(zhuǎn)換成電信號,而這又是轉(zhuǎn)換成溫度值基于傳感器的校準方程和目標的發(fā)射率。 Smart Infrared Temperature Sensors Keeping up with continuously evolving process technologies is a major challenge for process engineers. Add to that the demands of staying current with rapidly evolving methods of monitoring and controlling those processes, and the assignment can bee quite intimidating. However, infrared (IR) temperature sensor manufacturers are giving users the tools they need to meet these challenges: the latest puterrelated hardware, software, and munications equipment, as well as leadingedge digital circuitry. Chief among these tools, though, is the next generation of IR thermometers—the smart sensor. Today’s new smart IR sensors represent a union of two rapidly evolving sciences that bine IR temperature measurement with highspeed digital technologies usually associated with the puter. These instruments are called smart sensors because they incorporate microprocessors programmed to act as transceivers for bidirectional, serial munications between sensors on the manufacturing floor and puters in the control room (see Photo 1). And because the circuitry is smaller, the sensors are smaller, simplifying installation in tight or awkward areas. Integrating smart sensors into new or existing process control systems offers an immediate advantage to process control engineers in terms of providing a new level of sophistication in temperature monitoring and control. Integrating Smart Sensors into Process Lines While the widespread implementation of smart IR sensors is new, IR temperature measurement has been successfully used in process monitoring and control for decades (see the sidebar, “How Infrared Temperature Sensors Work,” below). In the past, if process engineers needed to change a sensor’s settings, they would have to either shut down the line to remove the sensor or try to manually reset it in place. Either course could cause delays in the line, and, in some cases, be very dangerous. Upgrading a sensor usually required buying a new unit, calibrating it to the process, and installing it while the process line lay inactive. For example, some of the sensors in a wire galvanizing plant used to be mounted over vats of molten lead, zinc, and/or muriatic acid and accessible only by reaching out over the vats from a catwalk. In the interests of safety, the process line would have to be shut