【摘要】集合(1)一.選擇題(每小題6分)1.若A={x|0x2},B={x|1x?2},則AB?=()A.{x|x}0?B.{x|x2?}C.{x|0}2??xD.{x|0x2}()A.y=392??xx與y=x+3=12
2024-11-27 11:22
【摘要】1-函數(shù)的概念(2)一、選擇題:1.函數(shù)f(x)=xx???11的定義域為()A.RB.(0,+∞)C.[-1,1]D.(-1,1)2.有下列四個命題:①y=|x|,x∈{-2,-1,0,1,2,3},則它的值域是{0,1,2,3}②y=x2,x∈R且x
2024-12-06 00:24
【摘要】1-函數(shù)的概念(1)一、選擇題:,每件價格為,買x件玩具所需的錢數(shù)為f(x)=,此時x的取值范圍是(),表示同一個函數(shù)的是()(x)=|x|,g(t)=2t(x)=2x,g(x)=(x)2(x)=112??xx,g(x)=x+
【摘要】函數(shù)的表示法一、選擇題:1.圖中用箭頭所表示的A中元素與B中元素的對應(yīng)法則是映射的是()2.設(shè)f:A→B為從集合A到集合B的一個映射,其中A=R+,B=R,且f:x→x2-2x-1,則A中元素1+2的象和B中元素-1的原象分別是()A.2;0或2
【摘要】1-2-函數(shù)的表示法(1)一、選擇題:1.函數(shù)y=x+||xx的圖象是()2.某同學(xué)飯后出去散步,從家中走20分鐘到一個離家900米的報享看10分鐘報紙后,用15分鐘返回家里,下面圖形中表示該同學(xué)離家的時間與距離之間的關(guān)系是()3.已知f(x)是一次函數(shù),
【摘要】對數(shù)函數(shù)及其性質(zhì)(1)一、選擇題:)5(log)2(xyx???的定義域是()A.),5()2,(?????B.)5,2(C.)5,3()3,2(?D.)4,3()1(log2)(2???xxxf的值域為()A.(2,+?)B.(-?,2)
2024-12-06 00:22
【摘要】對數(shù)函數(shù)及其性質(zhì)(2)一、選擇題:7log6?a,6log7?b,則()A.abB.abC.a+b=1D.a-b=1xylg?的圖象關(guān)于()軸對稱軸對稱xy?對稱4lglg2?x,則?x(
【摘要】函數(shù)模型的應(yīng)用舉例一、選擇題:1998年生產(chǎn)電子元件2萬件,計劃從1999年起每年比上一年增產(chǎn)10%,則2020年生產(chǎn)電子元件(精確到)()萬件.A.B.C.D.100年剩留原來質(zhì)量的%,設(shè)質(zhì)量為1的鐳經(jīng)過x年后的剩留量為y,則x,y間的關(guān)系為(
【摘要】函數(shù)的奇偶性(1)一、選擇題:y=f(x)的定義域關(guān)于坐標(biāo)原點對稱,并且有f(-x)+f(x)=0,則該函數(shù)是()y=f(x)的定義域關(guān)于坐標(biāo)原點對稱,并且有f(-x)-f(x)=0,則該函數(shù)是()f(x)=0,x?[-2,2
【摘要】對數(shù)函數(shù)及其性質(zhì)(3)一、選擇題:10????ayx,則有()A.0)(log?xyaB.1)(log0??xyaC.2)(log1??xyaD。2)(log?xya2.若baRba??且,,,則()A.22ba?B.a(chǎn)b1
【摘要】指數(shù)函數(shù)及其性質(zhì)(3)一、選擇題:xy??2的圖象是()ABCD)10()(???aaaxfx且對于x,y∈R,都有()(xy)=f(x)f(y)(
【摘要】高函數(shù)的基本性質(zhì)及指數(shù)函數(shù)一、選擇題(每小題7分,共42分)1.化簡[32)5(?]43的結(jié)果為()A.5B.5C.-5D.-5。。2.給定四個函數(shù):(1)xxy??2;(2))0(1??xxy;(3)11????xxy;(4)xxy32??,其
2024-12-06 00:18
【摘要】集合的含義與表示一、選擇題:,構(gòu)成集合的是()2的實數(shù),3,?,3,……()1,2,3,1,4構(gòu)成的集合是{1,2,3,1,4}-2≤x1的x構(gòu)成的集合是{-2≤x1}{x|x是實數(shù)}y=
2024-11-27 11:24
【摘要】方程的根與函數(shù)的零點(2)一、選擇題:1.借助計算器利用二分法確定函數(shù)f(x)=x3-3x+1的零點近似值為()(精確到)A.B.C.D.x3-4x-5=0在區(qū)間[2,3]內(nèi)的實根時,取區(qū)間中點x0=,則下一個有根區(qū)間為()A.[2,3]B.[2,2,5]C.[2
【摘要】方程的根與函數(shù)的零點(1)一、選擇題:1.函數(shù)y=(x-1)(x2-2x-3)的零點為()A.1,2,3B.1,-1,3C.1,-1,-3D.無零點2.k為何值時,函數(shù)f(x)=2x2-4x+k無零點,則()A.k=2B.k2