【摘要】第二章平面向量2一、向量的坐標(biāo)運算課型A例1.已知向量a=(1,3),b=(3,n),若2a–b與b共線,則實數(shù)n的值是(B)A.6C.323?D323?例2.已知向量??52,5,2,1?????babaa,則b等于(
2024-12-13 06:38
【摘要】第二章一、選擇題1.設(shè)e1、e2是平面內(nèi)所有向量的一組基底,則下面四組向量中,不能作為基底的是()A.e1+e2和e1-e2B.3e1-2e2和4e2-6e1C.e1+2e2和e2+2e1D.e2和e1+e2[答案]B[解析]∵4e2-6e1=-2(3e1-2
2024-12-05 23:46
【摘要】平面向量基本定理一.學(xué)習(xí)要點:向量基本定理及其簡單應(yīng)用二.學(xué)習(xí)過程:(一)復(fù)習(xí):1向量的加法運算;2向量共線定理;(二)新課學(xué)習(xí):1.平面向量基本定理:如果1e,2e是同一平面內(nèi)的兩個向量,那么對于這一平面內(nèi)的任一向量a,
【摘要】2021高中數(shù)學(xué)第二章平面向量綜合檢測B新人教A版必修41.設(shè)?1e與?2e是不共線的非零向量,且k?1e+?2e與?1e+k?2e共線,則k的值是()(A)1(B)-1(C)1?(D)任意不為零的實數(shù)2.在四邊形ABCD中,???AB=???D
2024-12-06 11:15
【摘要】撰稿教師:李麗麗學(xué)習(xí)目標(biāo)1.了解平面向量基本定理,掌握平面向量基本定理及其應(yīng)用2.利用平面向量基本定理解決有關(guān)問題學(xué)習(xí)過程一、課前準(zhǔn)備(預(yù)習(xí)教材96頁~98頁,找出疑惑之處)二、新課導(dǎo)學(xué)1、平行向量基本定理2、平面內(nèi)任一向量是否可以用兩個不共線的向量來表示。如圖,設(shè)2
2024-11-26 16:44
【摘要】3.2平面向量基本定理,)1.問題導(dǎo)航(1)平面向量基本定理與向量的線性運算有何關(guān)系?(2)在平面向量基本定理中為何要求向量e1,e2不共線?(3)對于同一向量a,若基底不同,則表示這一向量a的實數(shù)λ1,λ2的值是否相同?2.例題導(dǎo)讀P86例,學(xué)會應(yīng)用平面向量基本定理解決實
2024-12-06 01:58
【摘要】第二章綜合測試(B)(時間:120分鐘滿分:150分)一、選擇題(本大題共12個小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的)1.下列各組函數(shù)表示同一函數(shù)的是()A.y=x2-9x-3與y=x+3B.y=x2-1與y=x-1C.y=x0(x≠0)與
2024-12-06 00:02
【摘要】綜合檢測二一、選擇題1.設(shè)集合A={x|2≤x<4},B={x|3x-7≥8-2x},則A∪B等于()A.{x|3≤x<4}B.{x|x≥3}C.{x|x>2}D.{x|x≥2}2.若函數(shù)f(x)=?????x2+1,x≤1,lgx,
【摘要】雙基達(dá)標(biāo)?限時20分鐘?1.如果e1、e2是平面α內(nèi)所有向量的一組基底,那么下列命題正確的是().A.若實數(shù)λ1、λ2使λ1e1+λ2e2=0,則λ1=λ2=0B.對空間任一向量a都可以表示為a=λ1e1+λ2e2,其中λ1、λ2∈RC.λ1e1+λ2e
【摘要】2.1.5向量共線條件與軸上向量坐標(biāo)運算一、學(xué)習(xí)要點:單位向量、軸上向量坐標(biāo)運算、共線定理應(yīng)用二、學(xué)習(xí)過程:(一)復(fù)習(xí)引入:1.向量的表示方法2.向量的加法,減法及運算律3.實數(shù)與向量的乘法(向量數(shù)乘)4.向量共線定理(二)講解新課:1.單位向量給定一個非零向量a,與a同方向且長度等于的單位向量叫
【摘要】金太陽新課標(biāo)資源網(wǎng)第二章《平面向量》測試(3)(新人教A版必修4)一、選擇題1.化簡得()A.B.C.D.2.設(shè)分別是與向的單位向量,則下列結(jié)論中正確的是()A.B.C.D.3.已知下列命題中:(1)若,且,則或,(2)若,則或(3)若不平行的兩個非零向量,滿足,則(4)若與
2025-04-13 02:59
【摘要】第二章綜合測試(A)(時間:120分鐘滿分:150分)一、選擇題(本大題共12個小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的)1.若函數(shù)f(x)=a,則f(x2)=()A.a(chǎn)2B.a(chǎn)C.x2D.x[答案]B[解析]∵f(x)=a,∴
2024-12-06 00:03
【摘要】第一篇:高中數(shù)學(xué)必修4人教A教案第二章平面向量復(fù)習(xí) 第二章 平面向量復(fù)習(xí)課 (一)一、教學(xué)目標(biāo) 。(共起點)和三角形法則(首尾相接)。:||a|-|b|≤|a±b|≤|a|+|b|(試問:取等...
2024-11-16 23:32
【摘要】一、選擇題1.(2021·衡水高一檢測)設(shè)e1,e2是平面內(nèi)所有向量的一組基底,則下列四組向量中,不能作為基底的是()A.e1+e2和e1-e2B.3e1-4e2和6e1-8e2C.e1+2e2和2e1+e2D.e1和e1+e2【解析】B中,∵6e1-8e2=2(3e1-4e
【摘要】§6平面向量數(shù)量積的坐標(biāo)表示,)1.問題導(dǎo)航(1)向量數(shù)量積的坐標(biāo)公式適用于任何兩個向量嗎?(2)向量有幾種表示方法?由于表示方法的不同,計算數(shù)量積的方法有什么不同?(3)由向量夾角余弦值的計算公式可知,兩個向量的數(shù)量積和兩個向量夾角的余弦值有什么關(guān)系?2.例題導(dǎo)讀
2024-12-06 00:13