【摘要】復(fù)習(xí)引入兩腰相等;等腰三角形有哪些特征呢?ABC,簡稱“在同一個(gè)三角形中,等邊對等角”;、底邊上的中線和底邊上的高互相重合。簡稱“等腰三角形三線合一”,對稱軸是底邊的中垂線。?:ΔABC中,已知AB=AC,?圖中有哪些角相等?∠B=∠C在同一個(gè)三角形
2024-08-14 13:41
【摘要】第2課時(shí)等腰三角形的判定知識要點(diǎn)基礎(chǔ)練知識點(diǎn)1等腰三角形的判定△ABC中,∠A的相鄰?fù)饨鞘?0°,要使△ABC為等腰三角形,則∠B為(B)°°°或35°°,不可能是等腰三角形的是(B
2025-06-23 00:16
【摘要】ABO如圖,位于在海上A、B兩處的兩艘救生船接到O處的遇險(xiǎn)報(bào)警,當(dāng)時(shí)測得∠A=∠B。如果這兩艘救生船以同樣的速度同時(shí)出發(fā),能不能大約同時(shí)趕到出事地點(diǎn)(不考慮風(fēng)浪因素)?等腰三角形的判定:如果一個(gè)三角形中有兩個(gè)角相等,那么這兩個(gè)角所對的邊也相等.(等角對等邊)
2024-12-09 00:55
【摘要】等腰三角形的性質(zhì)定理1、從邊看:等腰三角形的兩腰相等。(定義)2、從角看:等腰三角形的兩底角相等。(性質(zhì)定理1)3、從重要線段看:等腰三角形的頂角平分線、底邊上的中線和高線互相重合。(性質(zhì)定理2)定義:有兩邊相等的三角形是等腰三角形。如何判定一個(gè)三角形是等腰三角形?還有其他方法嗎?等腰三角形的兩底角相等,
2024-12-02 13:18
【摘要】等腰三角形的判定P143思考如圖,位于在海上A、B兩處的兩艘救生船接到O處遇險(xiǎn)船只的報(bào)警,當(dāng)時(shí)測得∠A=∠B.如果這兩艘救生船以同樣的速度同時(shí)出發(fā),能不能大約同時(shí)趕到出事地點(diǎn)(不考慮風(fēng)浪因素)?OBAOAB已知:如圖,在ΔOAB中,∠A=∠B,求證:OA=OB.證明:過O點(diǎn)作OC⊥AB,垂
2024-12-02 17:31
【摘要】等腰三角形的性質(zhì)(1)(課本P49頁)如圖.把一張長方形紙片按圖中的虛線對折,并剪去陰影部分,再把它展開,得△ABC,活動(dòng)1:實(shí)踐觀察,認(rèn)識三角形ACDBAC和AB有什么關(guān)系?這個(gè)三角形有什么特點(diǎn)?探索:定
2024-11-30 02:04
【摘要】?答:有兩邊相等的三角形叫做等腰三角形.?(1)等腰三角形的兩個(gè)底角相等。一、概念回顧(2)等腰三角形頂角平分線,底邊上中線和高線互相重合。(3)等腰三角形是軸對稱圖形,對稱軸是底邊的中垂線。等腰三角形的判定:?等角對等邊;?有兩邊相等;?“三線合一”的逆定理.等邊三角形的性質(zhì):?
2024-11-17 00:27
【摘要】兩腰相等;,(簡稱“在同一個(gè)三角形中,等邊對等角”)、底邊上的中線和底邊上的高互相重合。(簡稱“等腰三角形三線合一”),對稱軸是底邊的中垂線。溫故而知新等腰三角形有哪些特征呢?ABCD如圖所示,量出AC的長,就可知道河的寬度AB,你知道為什么嗎?探索思考
2024-11-09 15:45
【摘要】◆知識導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎第一階◎第二階◎第三階)◆知識導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎第一階◎第二階◎第三階)◆知識導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎第一階◎第二階◎第三階)◆知識導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎第一階◎第二階◎第三
2025-06-21 12:08
【摘要】等腰三角形兩腰相等;等腰三角形兩底角相等;等腰三角形“三線合一”;……問題1:小區(qū)內(nèi)有一個(gè)三角形小花壇,現(xiàn)在想把它分割成兩個(gè)三角形,使之可以種上不同的花。你會(huì)怎么分?ABCP問題2:如果要分割成兩個(gè)等腰三角形呢?原三角形的角度不知道。無法分!從頂點(diǎn)引一條線段問題3:如果花壇
2024-08-28 20:28
【摘要】等腰三角形等腰三角形第1課時(shí)等腰三角形的性質(zhì)知識要點(diǎn)基礎(chǔ)練知識點(diǎn)1等腰三角形的性質(zhì)——等邊對等角40°,則它的底角度數(shù)為(D)°°°°,已知AB∥CD,AE與AB的夾角為48°,若CF與EF的長度相等,則∠
2025-06-23 00:17
【摘要】§等腰三角形的性質(zhì)和判定等腰三角形的性質(zhì)和判定?命題、公理命題、公理v1.了解命題、命題的條件與結(jié)論、真命題、假命題、逆命題、定義、公理、定理、逆定理的意義。v2.掌握以下公理:兩直線平行,同位角相等;同位角相等,兩直線平行;兩邊夾角對應(yīng)相等的兩個(gè)三角形全等;兩角夾邊對應(yīng)相等的兩個(gè)三角形全等;三邊對應(yīng)相等的兩個(gè)三角形全等;全等
2024-08-28 20:34
【摘要】等腰三角形的判定△ABC中AB=AC請你說說等腰三角形的性質(zhì)有哪些?1、等腰三角形兩底角相等(等邊對等角),2、等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合(三線合一)。,如果有兩個(gè)角相等,那么它們所對的邊有什么關(guān)系?已知:如圖,在ΔOAB中,∠A=∠
2024-12-02 17:30
【摘要】如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對的邊也相等(等角度等邊)ABC2、如圖,下列推理正確嗎?ABCD21∵∠1=∠2∴BD=DC(等角對等邊)∵∠1
【摘要】......分類討論u全等三角形 等腰三角形直角三角形中的分類討論一、腰或底邊不確定時(shí)需討論1.等腰三角形兩邊長為3cm和5cm,則它的周長是(
2025-03-30 02:16