【摘要】解直角三角形第2課時1、了解仰角、俯角的概念,能應(yīng)用銳角三角函數(shù)的知識解決有關(guān)實際問題;2、培養(yǎng)學(xué)生分析問題、解決問題的能力.(2)兩銳角之間的關(guān)系∠A+∠B=90°(3)邊角之間的關(guān)系caAA???斜邊的對邊sincbBB???斜邊的對邊sincbAA???
2024-11-29 00:13
【摘要】通州育才中學(xué)吳鋒2020-11復(fù)習(xí)30°、45°、60°角的正弦值、余弦值和正切值如下表:銳角a三角函數(shù)30°45°60°sinacosatana12223222123
2024-11-29 02:29
【摘要】解直角三角形第1課時ACBcba(1)三邊之間的關(guān)系:a2+b2=_____(2)銳角之間的關(guān)系:∠A+∠B=_____(3)邊角之間的關(guān)系:sinA=_____,cosA=_____tanA=_____在Rt△ABC中,共有六個元素(三條邊,三個角),其中∠C=90°,那
2024-11-29 04:10
【摘要】解直角三角形(2)在直角三角形中,除直角外,由已知兩元素求其余未知元素的過程叫解直角三角形.(1)三邊之間的關(guān)系:a2+b2=c2(勾股定理);(2)兩銳角之間的關(guān)系:∠A+∠B=90o;(3)邊角之間的關(guān)系:ACBabc
【摘要】解直角三角形(2)(2)兩銳角之間的關(guān)系∠A+∠B=90°(3)邊角之間的關(guān)系caAA???斜邊的對邊sincbBB???斜邊的對邊sincbAA???斜邊的鄰邊coscaBB???斜邊的鄰邊cosbaAAA????的鄰邊的對邊t
【摘要】在Rt△ABC中,∠C=90°,根據(jù)下列條件解直角三角形;(1)a=30,b=20;(2)∠B=72°,c=14.ABCb=20a=30c(2)兩銳角之間的關(guān)系∠A+∠B=90°(3)邊角之間的關(guān)系caAA???斜邊的對邊s
2024-11-29 06:18
2024-12-04 18:22
【摘要】滬科版九年級數(shù)學(xué)上冊第1課時解直角三角形解直角三角形及其應(yīng)用狀元成才路狀元成才路狀元成才路新課導(dǎo)入ACBabc復(fù)習(xí)三角形的三角函數(shù)sinA=,sinB=,cosA=,cosB=,
2025-03-17 07:53
【摘要】(第二課時)福州民族中學(xué)陳毓新在Rt△ABC中,∠C=90°,根據(jù)下列條件解直角三角形;(1)a=30,b=20;(2)∠B=72°,c=14.ABCb=20a=30c(2)兩銳角之間的關(guān)系∠A+∠B=90°(3)邊角之間的關(guān)系
2024-10-08 10:39
【摘要】解直角三角形(2)在直角三角形中,除直角外,由已知元素,求其余未知元素的過程叫解直角三角形.(1)三邊之間的關(guān)系:a2+b2=c2(勾股定理);(2)兩銳角之間的關(guān)系:∠A+∠B=90o(3)邊角之間的關(guān)系:ACBabctanA=absinA=
2024-11-29 04:44
【摘要】,仰角與俯角有何區(qū)別?如圖,有兩建筑物,在甲建筑物上從A到E點掛一長為30米的宣傳條幅,在乙建筑物的頂部D點測得條幅頂端A點的仰角為45°,條幅底端E點的俯角為30°.求甲、乙兩建筑物之間的水平距離BCAEDCB利用解直角三角形的方法解決實際問題時應(yīng)注意什么?
2024-12-02 17:04
2024-12-04 21:03
【摘要】§解直角三角形(1)復(fù)習(xí)30°、45°、60°角的正弦值、余弦值和正切值如下表:銳角a三角函數(shù)30°45°60°sinacosatana1222322212332
【摘要】解直角三角形(4)1、如圖,在Rt△ABC中:22復(fù)習(xí)ABC(1)∠A=30°,AB=4,解這個直角三角形;(2)tanA=,求∠A的大小。導(dǎo)入如圖,有三個斜坡,其坡面與水平面的夾角分別為α、β、γ,且αβγ
2024-11-30 02:59
【摘要】——坡度問題1、斜坡的坡度是,則坡角α=______度。2、傳送帶和地面所成的斜坡的坡比為1:2,把物體從地面送到離地面3米高的地方,則物體通過的路程為_______米。3、斜坡的坡角是600,則坡比是_______。4、斜坡長是12米,坡高6米,則坡比是_______。5、斜