【正文】
/Layered silicate nanpposites 聚合物 /層狀硅酸鹽納米復合材料制備方法 (插層法 ) 聚合物共混改性原理 Morphology of layered silicate 聚合物共混改性原理 situ Polymerization 聚合物共混改性原理 intercalation from solution 聚合物共混改性原理 intercalation 聚合物共混改性原理 Mechanically blend polymer–anoclay mixtures above the polymer’s Tm (., high shear twin screw extrusion) Nanoposite Formation Technique Melt Processing –(常規(guī)做法 ) hp 聚合物共混改性原理 Naoki Hasegawa, et al, Polymer 44 (2022) 2933–2937 a novel pounding process using Na–montmorillonite water slurry for preparing novel nylon 6/Na–montmorillonite nanoposites Schematic figure depicting the pounding process for preparing the NCHCS using the clay slurry New method(加入層狀無機材料的懸浮液 ) 聚合物共混改性原理 Naoki Hasegawa, et al, Polymer 44 (2022) 2933–2937 Schematic figures depicting dispersion of the Na–montmorillonite silicate layers of the slurry into nylon 6 during pounding 聚合物共混改性原理 Kiics of polymer melt intercalation Two steps for nanoposite formation: ? Polymer transported from the agglomeratepolymer melt interface to the primary particles ? Polymer melt perate to the edges of the crystallites The first step is limiting step for polymer nanoposites formation 聚合物共混改性原理 Thermodynamic analysis △ F = F(h) F(h0) = △ E T△ S △ F < 0 indicate layer separation is favorable △ F > 0 implies the initial unintercalated state is favorable △ S ≈ △ S chain + △ S polymer saisafsapfappfsp AAAAE ??? )( ?????聚合物共混改性原理 第四節(jié)層狀納米復合材料結(jié)構(gòu)與性能 Layered Nanoposite structure 聚合物共混改性原理 Schematic illustration of two different types of thermodynamically achievable polymer/layered silicate nanoposites. 聚合物共混改性原理 Schematic depicting the XRD patterns for various types of structures 不同插層結(jié)構(gòu)的表征 (X射線衍射法 ) 層狀有序結(jié)構(gòu)完全消失 完全未解離 插層結(jié)構(gòu)(層間距明顯增大 ) 插層結(jié)構(gòu)均一 插層結(jié)構(gòu)無序 聚合物共混改性原理 Xray diffraction pattern of PEO/Na+MMT hybrid heated to 80 ℃ for 0, 2, and 6 h Vaia RA, et al, Macromolecules 1995, 28: 8080 MMT片層結(jié)構(gòu)衍射峰 聚合物共混改性原理 Temporal series of Xray diffraction patterns for a PS30/F18 pellet annealed in situ at 160 ℃ in vacuum Vaia RA, et al, Adv Mater 1995,7,154–156 聚合物共混改性原理 Properties of polymer layered silicate nanoposites Efficient reinforcement with minimal loss of ductility and impact strength Increase thermal stability Increase flame retardant Improved gas barrier properties Improved ionic conductivity Reduced thermal expansion coefficient Altered electronic and optical properties 聚合物共混改性原理 Properties of Nylon6 layered silicate nanoposites Property Nanoposites Nylon6 Tensile Modulus (GPa) Tensile Strength (MPa) Heat Distortion Temp (℃ ) Impact Strength (KJ/m2) Water Adsorption (%) Coefficient Thermal Expansion ( x,y ) 107 160 105 69 65 13 105