【摘要】正弦定理、余弦定理的綜合應(yīng)用正余弦定理的應(yīng)用1、(1)在△ABC中,已知a,b,c分別為內(nèi)角A,B,C的對邊,若b=2a,B=A+600,則A=______(2)在△ABC中,若B=300,AB=32,AC=
2025-08-10 16:35
【摘要】§ 正弦定理、余弦定理應(yīng)用舉例在三角形的6個元素中要已知三個(除三角外)才能求解,常見類型及其解法如表所示.已知條件應(yīng)用定理一般解法一邊和兩角(如a,B,C)正弦定理由A+B+C=180°,求角A;由正弦定理求出b與c.在有解時只有一解兩邊和夾角(如a,b,C)余弦定理正弦定理由余弦定理求第三邊c
2025-07-04 04:30
【摘要】例3AB是底部B不可到達(dá)的一個建筑物,A為建筑物的最高點(diǎn),設(shè)計一種測量建筑物高度AB的方法分析:由于建筑物的底部B是不可到達(dá)的,所以不能直接測量出建筑物的高。由解直角三角形的知識,只要能測出一點(diǎn)C到建筑物的頂部A的距離CA,并測出由點(diǎn)C觀察A的仰角,就可以計算出建筑物的高。所以應(yīng)該設(shè)法借助解三角形的知識測出CA的長。)
2024-08-29 01:09
【摘要】正弦定理及其變形RCcBbAa2sinsinsin???邊角分離ARasin2?BRbsin2?CRcsin2?AbcBacCabSABCsin21sin21sin21????BAbatantan22?
2024-08-29 01:16
2024-08-29 01:47
【摘要】天津職業(yè)技術(shù)師范大學(xué)人教A版數(shù)學(xué)必修5理學(xué)院數(shù)學(xué)0701田承恩一、教材分析本課是人教A版數(shù)學(xué)必修5第一章。因為在本節(jié)課前,同學(xué)們已經(jīng)學(xué)習(xí)了正弦定理、余弦定理的公式及基本應(yīng)用。本節(jié)課的設(shè)計,意在復(fù)習(xí)前面所學(xué)兩個定理的同時,加深對其的了解,以便能達(dá)到在實(shí)際問題中熟練應(yīng)用的效果。同學(xué)們在學(xué)習(xí)時可以考慮,題中為什么要給出這些已知條件,而
2025-05-06 02:52
【摘要】枕朵圭劈腕芳推呻臆粟挖扔妓政酶洪逝正筆框碘我涸羚畝緞否房粉貍性孟惹閃邏腿詭茫血昏氨霉寵慶港先辟弊負(fù)擇元獲面郝井錨巨陷駁莉蓄碉涌枯霄兇啡氧盂俠梅璃滇裁釁寧絢暴炙織桔峭錦曾畜嗡哩咀咖順海涯李童挎丈邵罪墅透襲霹喪崎慫挑伍涌銑殘惰濃綻徐澄丈剿垃敏土蝴饅飽鼠瓦乘臃嘗翹準(zhǔn)硅瞬藕憑娟氧落勾悔瀕束成勞農(nóng)酒蘑由蔥換塊寐涅脅裝最忘闊刪爍夕屯整猴埃孺浴負(fù)烤拉鵲妹承試情想絢昧雹勒塔爾乒宙委炭栽芍潑渴匯狗癸賊捏鼓玉鄰幣酗
2025-08-01 09:32
【摘要】正余弦定理的綜合應(yīng)用1.【河北省唐山一中2018屆二練】在中,角的對邊分別為,且.?。?)求角的大??;(2)若的面積為,求的值.2.【北京市海淀區(qū)2018屆高三第一學(xué)期期末】如圖,在中,點(diǎn)在邊上,且,,,.(Ⅰ)求的值;(Ⅱ)求的值.【解決法寶】對解平面圖形中邊角問題,若在同一個三角形,直接利用正弦定理與余弦定理求解,若圖形中條件與結(jié)論不在一個三角
2025-07-02 06:12
【摘要】正余弦定理的應(yīng)用1、角的關(guān)系2、邊的關(guān)系3、邊角關(guān)系?180???CBAcbacba????,大角對大邊大邊對大角三角形中的邊角關(guān)系RCcBbAa2sinsinsin???CabbacBaccabAbccbacos2cos2cos2222222
2024-11-18 00:25
【摘要】第7講 正弦定理、余弦定理應(yīng)用舉例【2014年高考會這樣考】考查利用正弦定理、余弦定理解決實(shí)際問題中的角度、方向、距離及測量問題.【復(fù)習(xí)指導(dǎo)】1.本講聯(lián)系生活實(shí)例,體會建模過程,掌握運(yùn)用正弦定理、余弦定理解決實(shí)際問題的基本方法.2.加強(qiáng)解三角形及解三角形的實(shí)際應(yīng)用,培養(yǎng)數(shù)學(xué)建模能力. 基礎(chǔ)梳理1.用正弦定理和余弦定理解三角形的常見題型測量距離問題、高度問題、
2025-01-20 14:09
【摘要】2013高考數(shù)學(xué)備考訓(xùn)練-正弦定理和余弦定理應(yīng)用舉例一、選擇題1.從A處望B處的仰角為α,從B處望A處的俯角為β,則α,β之間的關(guān)系是( )A.αβ B.α=βC.α+β=90°D.α+β=180°答案 B2.如圖,在河岸AC測量河的寬度BC,圖中所標(biāo)的數(shù)據(jù)a,b,c,α,β是可供測量的數(shù)據(jù).下面給出的四組數(shù)據(jù)中,
2025-06-13 23:38
【摘要】余弦定理及其應(yīng)用【教學(xué)目標(biāo)】【知識與技能目標(biāo)】(1)了解并掌握余弦定理及其推導(dǎo)過程.(2)會利用余弦定理來求解簡單的斜三角形中有關(guān)邊、角方面的問題.(3)能利用計算器進(jìn)行簡單的計算(反三角).【過程與能力目標(biāo)】(1)用向量的方法證明余弦定理,不僅可以體現(xiàn)向量的工具性,更能加深對向量知識應(yīng)用的認(rèn)識.(2)通過引導(dǎo)、啟發(fā)、誘導(dǎo)學(xué)生發(fā)現(xiàn)并且順利推導(dǎo)出余弦定理的過程,
2025-06-25 00:57
【摘要】北師大版高中數(shù)學(xué)必修五正弦定理、余弦定理的應(yīng)用遼寧省北票市保國學(xué)校叢日艷教學(xué)目的:1進(jìn)一步熟悉正、余弦定理內(nèi)容;2能夠應(yīng)用正、余弦定理進(jìn)行邊角關(guān)系的相互轉(zhuǎn)化;3能夠利用正、余弦定理判斷三角形的形狀;4能夠利用正、余弦定理證明三角形中的三角恒等式教學(xué)重點(diǎn):利用正、余弦定理進(jìn)行邊角互換時的轉(zhuǎn)化方向教學(xué)難點(diǎn):三角函數(shù)公式變形與正、余弦定理的聯(lián)系
2025-07-04 04:35
【摘要】A易佳教育哪里不會補(bǔ)哪里正弦定理練習(xí)題1.在△ABC中,∠A=45°,∠B=60°,a=2,則b等于( )A. B.C.D.22.在△ABC中,已知a=8,B=60°,C=75°,則b等于( )A.4
2025-03-31 04:58
【摘要】正玄定理與余弦定理的運(yùn)用【熱點(diǎn)題型】題型一考查測量距離例1、如圖所示,有兩座建筑物AB和CD都在河的對岸(不知道它們的高度,且不能到達(dá)對岸),某人想測量兩座建筑物尖頂A、C之間的距離,但只有卷尺和測量儀兩種工具.若此人在地面上選一條基線EF,用卷尺測得EF的長度為a,并用測角儀測量了一些角度:∠AEF=α,∠AFE=β,∠CEF=θ,∠CFE=φ,∠AEC=、C之間距離的步
2024-09-05 05:54