【正文】
?0)(0)())(())(()(:0)(:0)(..:)(min)(.1)(11???????????????????????????xxxxxhxgxRRhxhRRgxgtsRRfxff ghT e c h ni queonM i n i m i z at ine dU nc ons t r aiSe qu e nt i alSU M Tljjmiilnmnn?????有不滿足約束的有目的:使?jié)M足約束的構造罰函數(shù):罰函數(shù)概念:序列無約束最優(yōu)化方法3罰函數(shù)法 (續(xù)) )2.(22||)(}],0{[ m a x)()(),()()(min)()(0)(,0000,0)(000,0)(次是最低次的光滑函數(shù)常用:因次罰函數(shù)時,稱當為正整數(shù)。 x(k)~KT點 ????????0,0,jjjjjj rrxrrd當當??????????0..)(m in )(tsdxf k??????????0,0},0|/{m i n? )(ddddx jjkj否則當?一、解線性約束問題的既約梯度法 (續(xù)) .,:,:0)(..)(min0,552..32min.21212121212221babaRbaRRhRRfbxaxhtsxfPG R GxxxxxxtsxxxxxxExnlnn??????????????????????????????,且的分量允許連續(xù)可微。0000,0,0)00)(0:0)02111xuuuNBxfxfuBBxfxfuAvxfTKRBxfviiixrxdrruxuxuruuiidrdNjrridTTNTBTNTBTBTBTTTnTBTjjjjjNNNTNTNNBjjjjN?一、解線性約束問題的既約梯度法 (續(xù)) 證畢。即條件:可得取故時,當原因:則取矛盾;與那么,反證。為其中:時當時當?shù)姆桨赶虻囊环N產(chǎn)生下降可行方、結合TKxdPdddNdBdrrrrxrrdddNBNjjjjjjjN?????????????????~02)(,01,00::)2()1()3(1??一、解線性約束問題的既約梯度法 (續(xù)) 證畢。故即有)時,(則取由故又)時,(當為可行方向,即時當為可行方向尋找下降可行方向:dSdxdxddxbAxdxAAdddxAdbAxbAdAxdxAdpr oo fxdAdddjjjjjjjj.00}0|m i n {.)(,0,0.0,00,0,)(0,0:..0,00)1(????????????????????????????????????????????????????一、解線性約束問題的既約梯度法 (續(xù)) 0))()(()())(()()()(0)(:)2(0,00][.1111?????????????????????????????????????????????????NTNNTBTNNTNNTBNTNBTBTTNBjjNNBNBNBNBdrdNBxfxfdxfNdBxfdxfdxfdxfdxfdNdBddxddNdBdNdBdddNBAdddd分解:要求下降方向及中,對應可行,可取在故要使得到根據(jù)考慮分解一、解線性約束問題的既約梯度法 (續(xù)) 點。是則及為凸規(guī)劃,滿足可微性若亦可微,那么在如果還有那么如果TKxoptlxCQf ghmixguuxhvxguxfxIixgxhvxguxfljRvIiuoptlxiiiljjjmiiiiljjjIiiiji?????????????????????????????????????????????????????????????..)(,2,10)(00)()()())((0)()()(,2,1,0..111??一、解線性約束問題的既約梯度法 為既約梯度稱相應非基變量基變量,使非奇異,存在分解:、既約梯度及搜索方向)個正分量。在)(,連續(xù),在可微在設為起作用集。向量組約束規(guī)格)。是故得TKxuuuxuxuxuxT ????????????????)1,2(032,31022)2(202)3(22122122111二、不等式約束問題的 KhunTucker條件: (續(xù)) ● ● 點。 ②目標函數(shù)與一條曲