【摘要】第四節(jié)洛朗級(jí)數(shù)二、洛朗級(jí)數(shù)的概念三、函數(shù)的洛朗展開式一、問題的引入五、小結(jié)與思考四、典型例題2一、問題的引入問題:.,)(00的冪級(jí)數(shù)是否能表示為不解析在如果zzzzf?nnnzzc)(.10??????雙邊冪級(jí)數(shù)負(fù)冪項(xiàng)部分正冪項(xiàng)
2025-01-25 11:17
【摘要】§高階導(dǎo)數(shù)、高階偏導(dǎo)數(shù)一、高階導(dǎo)數(shù)二、高階偏導(dǎo)數(shù)一、高階導(dǎo)數(shù)的定義問題:變速直線運(yùn)動(dòng)的加速度.),(tfs?設(shè))()(tftv??則瞬時(shí)速度為的變化率對(duì)時(shí)間是速度加速度tva?.])([)()(??????tftvta定義.)())((,)()(lim))((,)()(0處的二階導(dǎo)
2025-05-13 12:10
【摘要】復(fù)習(xí)與回顧定理二.),(),(),(:),(),()(00000處連續(xù)在和連續(xù)的充要條件是在函數(shù)yxyxvyxuiyxzyxivyxuzf????定理一.),(lim,),(lim)(lim,,),,(),()(0000000
2025-01-25 08:40
【摘要】第一節(jié)復(fù)數(shù)及其代數(shù)運(yùn)算一、復(fù)數(shù)的概念二、復(fù)數(shù)的代數(shù)運(yùn)算三、小結(jié)與思考2一、復(fù)數(shù)的概念1.虛數(shù)單位:.,,稱為虛數(shù)單位引入一個(gè)新數(shù)為了解方程的需要i.1:2在實(shí)數(shù)集中無解方程實(shí)例??x對(duì)虛數(shù)單位的規(guī)定:;1)1(2??i.)2(四則運(yùn)算樣的法則進(jìn)行可以與實(shí)數(shù)在一起按同i3
2025-03-28 06:15
【摘要】序言?馬克思曾經(jīng)說過:“一種科學(xué)只有在成功地運(yùn)用數(shù)學(xué)時(shí),才算達(dá)到了真正完善的地步”。數(shù)學(xué)物理方法課程體系數(shù)學(xué)物理基礎(chǔ)篇復(fù)變函數(shù)篇數(shù)學(xué)物理方程篇特殊函數(shù)篇計(jì)算機(jī)仿真篇《數(shù)學(xué)物理方法》課程的主要內(nèi)容?
2024-12-14 05:11
【摘要】12第二節(jié)解析函數(shù)的充要條件?用函數(shù)解析的定義判斷函數(shù)的解析性往往比較困難;要判別一個(gè)函數(shù)在某個(gè)區(qū)域內(nèi)是否解析,關(guān)鍵在于判別函數(shù)在此區(qū)域內(nèi)是否可導(dǎo)。但是,要判別一個(gè)函數(shù)可不可導(dǎo),并且求出導(dǎo)數(shù),只根據(jù)導(dǎo)數(shù)的定義,這往往是很困難的.因此,需要尋找一個(gè)簡單的方法.3?函數(shù)
2025-07-31 04:10
【摘要】第一節(jié)復(fù)變函數(shù)積分的概念一、積分的定義二、積分存在的條件及其計(jì)算法三、積分的性質(zhì)四、小結(jié)與思考2一、積分的定義:設(shè)C為平面上給定的一條光滑(或按段光滑)曲線,如果選定C的兩個(gè)可能方向中的一個(gè)作為正方向(或正向),那么我們就把C理解為帶有方向的曲線,稱為有向曲線.xy
2024-10-13 15:42
【摘要】二、高階導(dǎo)數(shù)的運(yùn)算法則第三節(jié)一、高階導(dǎo)數(shù)的概念機(jī)動(dòng)目錄上頁下頁返回結(jié)束高階導(dǎo)數(shù)與隱函數(shù)的導(dǎo)數(shù)第二章三、隱函數(shù)求導(dǎo)一、高階導(dǎo)數(shù)的概念速度即sv??加速度即)(???sa引例:變速直線運(yùn)動(dòng)機(jī)動(dòng)目錄上頁下頁返回
2025-05-20 21:33
【摘要】1第三章復(fù)變函數(shù)的積分§解析函數(shù)的高階導(dǎo)數(shù)§解析函數(shù)的高階導(dǎo)數(shù)一、高階導(dǎo)數(shù)定理二、柯西不等式三、劉維爾定理2第三章復(fù)變函數(shù)的積分§解析函數(shù)的高階
2025-05-18 14:16
【摘要】?y=f(u),u=(x)?y=f((x))一般的可分解為y=sinu,u=(2x+3)課前復(fù)習(xí)復(fù)合函數(shù)可分解為y=sin(2x+3)?令u=(2x+3)則y=sinu所以復(fù)合函數(shù)可分解為:y
2025-05-22 23:10
【摘要】2022年3月13日星期日?qǐng)稣撆c復(fù)變函數(shù)?岳安軍西安電子科技大學(xué)通信工程學(xué)院西安電子科技大學(xué)通信工程學(xué)院2教學(xué)安排及方式?總學(xué)時(shí)46學(xué)時(shí),講課40學(xué)時(shí),習(xí)題課6學(xué)時(shí)2022年3月13日星期日第三章復(fù)變函數(shù)的積分?§復(fù)變函數(shù)積分的概念?
2025-02-24 23:10
【摘要】第四節(jié)區(qū)域第五節(jié)復(fù)變函數(shù)如果z的一個(gè)值對(duì)應(yīng)ω的多個(gè)值,那么稱函數(shù)f(z)是多值復(fù)變函數(shù)函數(shù)和映射的關(guān)系第六節(jié)復(fù)變函數(shù)的極限和連續(xù)性有界閉集上連續(xù)函數(shù)的性質(zhì)
2024-12-14 08:36
【摘要】1第六節(jié)高階導(dǎo)數(shù)一、問題的提出二、主要定理三、典型例題四、小結(jié)與思考2一、問題的提出問題:(1)解析函數(shù)是否有高階導(dǎo)數(shù)?(2)若有高階導(dǎo)數(shù),其定義和求法是否與實(shí)變函數(shù)相同?回答:(1)解析函數(shù)有各高階導(dǎo)數(shù).(2)高階導(dǎo)數(shù)的值可以用函數(shù)在邊界上的值通過積分來表示
2025-05-06 12:01
【摘要】§解析函數(shù)的高階導(dǎo)數(shù)一個(gè)解析函數(shù)不僅有一階導(dǎo)數(shù),而且有各高階導(dǎo)數(shù),它的值也可用函數(shù)在邊界上的值通過積分來表示.這一點(diǎn)和實(shí)變函數(shù)完全不同.一個(gè)實(shí)變函數(shù)在某一區(qū)間上可導(dǎo),它的導(dǎo)數(shù)在這區(qū)間上是否連續(xù)也不一定,更不要說它有高階導(dǎo)數(shù)存在了.定理解析函數(shù)f(z)的導(dǎo)數(shù)仍為解析函數(shù),它的n階導(dǎo)數(shù)為
【摘要】?基本求導(dǎo)公式?導(dǎo)數(shù)的四則運(yùn)算法則?復(fù)合函數(shù)的求導(dǎo)法xuxdydyduyyudxdudx???????或或復(fù)習(xí)[f(?(x))]?=f?(u)??(x)=f?(?(x))??(x)前面我們學(xué)習(xí)了函數(shù)的各種求導(dǎo)法。顯然y=x2的導(dǎo)數(shù)是y?=2x,而