freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

備戰(zhàn)中考數(shù)學(xué)平行四邊形(大題培優(yōu)-易錯-難題)-文庫吧資料

2025-03-31 22:56本頁面
  

【正文】 的性質(zhì)和旋轉(zhuǎn)的性質(zhì)即可證得:△AOF≌△DOE根據(jù)全等三角形的性質(zhì)證明;②作OG⊥AB于G,根據(jù)余弦的概念求出OF的長,根據(jù)勾股定理求值即可;(2)首先過點P作HP⊥BD交AB于點H,根據(jù)相似三角形的判定和性質(zhì)求出PE與PF的數(shù)量關(guān)系.【詳解】(1)①證明:∵四邊形ABCD是正方形,∴OA=OD,∠OAF=∠ODE=45176。在△ABE和△AFH中,∴△ABE≌△AFH(ASA),∴BE=FH,∵BM=BE+EM,F(xiàn)G=FH+HG,∴EM=HG,∵EC=EM+CM,CM=CG=CF,∴EC=HG+FC.【點睛】本題考查了正方形的性質(zhì)、全等三角形的判定與性質(zhì)、等腰直角三角形的判定與性質(zhì)、勾股定理等知識;熟練掌握等腰直角三角形的判定與性質(zhì),證明三角形全等是解題的關(guān)鍵.8.如圖,在正方形ABCD中,對角線AC與BD交于點O,在Rt△PFE中,∠EPF=90176。∴AC=AB=4,∵4AF=3AC=12,∴AF=3,∴CF=AC﹣AF=,∵EF⊥AC,∴△CEF是等腰直角三角形,∴EF=CF=,CE=CF=2,在Rt△AEF中,由勾股定理得:AE=,∴△AEF的周長=AE+EF+AF=;(2)證明:延長GF交BC于M,連接AG,如圖2所示:則△CGM和△CFG是等腰直角三角形,∴CM=CG,CG=CF,∴BM=DG,∵AF=AB,∴AF=AD,在Rt△AFG和Rt△ADG中,∴Rt△AFG≌Rt△ADG(HL),∴FG=DG,∴BM=FG,∵∠BAC=∠EAH=45176。得出AC=AB=4,求出AF=3,CF=AC﹣AF=,求出△CEF是等腰直角三角形,得出EF=CF=,CE=CF=2,在Rt△AEF中,由勾股定理求出AE,即可得出△AEF的周長;(2)延長GF交BC于M,連接AG,則△CGM和△CFG是等腰直角三角形,得出CM=CG,CG=CF,證出BM=DG,證明Rt△AFG≌Rt△ADG得出FG=DG,BM=FG,再證明△ABE≌△AFH,得出BE=FH,即可得出結(jié)論.【詳解】(1)∵四邊形ABCD是正方形,∴AB=BC=CD=AD=4,∠B=∠D=90176。求證:EC=HG+FC.【答案】(1);(2)證明見解析【解析】【分析】(1)由正方形性質(zhì)得出AB=BC=CD=AD=4,∠B=∠D=90176。得到△AGH,連結(jié)HM,HE.由(1)知△AEH≌△AEF,則由勾股定理有(GH+BE)2+BG2=EH2,即(GH+BE)2+(BM﹣GM)2=EH2又∴EF=HE,DF=GH=GM,BE=BM,所以有(GH+BE)2+(BE﹣GH)2=EF2,即2(DF2+BE2)=EF2考點:四邊形綜合題5.圖圖2是兩張形狀、大小完全相同的方格紙,方格紙中的每個小正方形的邊長均為1,每個小正方形的頂點叫做格點.(1)在圖1中畫出等腰直角三角形MON,使點N在格點上,且∠MON=90176。=90176?!唷螱ME=45176。得到△ABG,連結(jié)GM.則△ADF≌△ABG,DF=BG.由(1)知△AEG≌△AEF,∴EG=EF.∵∠CEF=45176。∴∠GAE=45176。得到△ABG,∴AF=AG,∠FAG=90176。MG=NF,利用勾股定理得出EG2=ME2+MG2,等量代換即可證明EF2=ME2+NF2;(3)將△ADF繞著點A順時針旋轉(zhuǎn)90176。故可證△AEG≌△AEF;(2)將△ADF繞著點A順時針旋轉(zhuǎn)90176。.(1)將△ADF繞著點A順時針旋轉(zhuǎn)90176。由(1)可知,AD=AO,又AB=AB,∠AOB=90176。∵矩形ADEF是由矩形AOBC旋轉(zhuǎn)得到,∴AD=AO=5,在Rt△ADC中,CD==4,∴BD=BCCD=1,∴D(1,3).(2)①如圖②中,由四邊形ADEF是矩形,得到∠ADE=90176?!進(jìn)N∥AE,∴∠DMN=∠DGE=90176?!郈E=CF,∴BC﹣CE=CD﹣CF,即BE=DF,∴△ABE≌△ADF,∴AE=AF,∴△AEF是等腰三角形;(2)DM、MN的數(shù)量關(guān)系是相等,DM、MN的位置關(guān)系是垂直;∵在Rt△ADF中DM是斜邊AF的中線,∴AF=2DM,∵M(jìn)N是△AEF的中位線,∴AE=2MN,∵AE=AF,∴DM=MN;∵∠DMF=∠DAF+∠ADM,AM=MD,∵∠FMN=∠FAE,∠DAF=∠BAE,∴∠ADM=∠DAF=∠BAE,∴∠DMN=∠FMN+∠DMF=∠DAF+∠BAE+∠FAE=∠BAD=90176。.從而得到DM、MN的位置關(guān)系是垂直.試題解析:(1)∵四邊形ABCD是正方形,∴AB=AD=BC=CD,∠B=∠ADF=90176。角的直角三角板ECF和一個正方形ABCD擺放在一起,使三角板的直角頂點和正方形的頂點C重合,點E、F分別在正方形的邊CB、CD上,連接AF.取AF中點M,EF的中點N,連接MD、MN.(1)連接AE,求證:△AEF是等腰三角形;猜想與發(fā)現(xiàn):(2)在(1)的條件下,請判斷MD、MN的數(shù)量關(guān)系和位置關(guān)系,得出結(jié)論.結(jié)論1:DM、MN的數(shù)量關(guān)系是 ;結(jié)論2:DM、MN的位置關(guān)系是 ;拓展與探究:(3)如圖2,將圖1中的直角三角板ECF繞點C順時針旋轉(zhuǎn)180176。﹣x,∴∠EAM=∠DBI,∵AE=BD,∴△AEM≌△DBI,∵在△DBI和△ABC中,DB=AB,BI=BC,∠DBI+∠ABC=180176。﹣90176。﹣x,∵∠DBI=360176。+90176?!唷鰽EF和△ABC是兩個互補三角形.∵∠EAH+∠HAB=∠BAC+∠HAB=90176。備戰(zhàn)中考數(shù)學(xué)平行四邊形(大題培優(yōu) 易錯 難題)一、平行四邊形1.如果兩個三角形的兩條邊對應(yīng)相等,夾角互補,那么這兩個三角形叫做互補三角形,如圖2,分別以△ABC的邊AB、AC為邊向外作正方形ABDE和ACGF,則圖中的兩個三角形就是互補三角形.(1)用尺規(guī)將圖1中的△ABC分割成兩個互補三角形;(2)證明圖2中的△ABC分割成兩個互補三角形;(3)如圖3,在圖2的基礎(chǔ)上再以BC為邊向外作正方形BCHI.①已知三個正方形面積分別是1110,在如圖4的網(wǎng)格中(網(wǎng)格中每個小正方形的邊長為1)畫出邊長為、的三角形,并計算圖3中六邊形DEFGHI的面積.②若△ABC的面積為2,求以EF、DI、HG的長為邊的三角形面積.【答案】(1)作圖見解析(2)證明見解析(3)①62;②6【解析】試題分析:(1)作BC邊上的中線AD即可.(2)根據(jù)互補三角形的定義證明即可.(3)①畫出圖形后,利用割補法求面積即可.②平移△CHG到AMF,連接EM,IM,則AM=CH=BI,只要證明S△EFM=3S△ABC即可.試題解析:(1)如圖1中,作BC邊上的中線AD,△ABD和△ADC是互補三角形.(2)如圖2中,延長FA到點H,使得AH=AF,連接EH.∵四邊形ABDE,四邊形ACGF是正方形,∴AB=AE,AF=AC,∠BAE=∠CAF=90176?!唷螮AF+∠BAC=180176?!唷螮AH=∠BAC,∵AF=AC,∴AH=AB,在△AEH和△ABC中,∴△AEH≌△ABC,∴S△AEF=S△AEH=S△ABC.(3)①邊長為、的三角形如圖4所示.∵S△ABC=34﹣2﹣﹣3=,∴S六邊形=17+13+1
點擊復(fù)制文檔內(nèi)容
小學(xué)相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1