【正文】
and and =internal force vector of the frame andthe shear walls at the (n- 1)th iteration. Using the assumed stressbased finiteelement method, the tangent stiffness matrix of the frame can be defined as Where = elastic property matrix and is a function of area , length, moment of inertia, and Young’s modulus of an element and and = transformation matrix and the geometric stiffness matrix. The internal force vector in Eq. (1) corresponding to the frame can be defined as where =homogeneous part of the internal nodal force vector and =deformation difference vector. The detailed expressions for evaluating all the matrixes in Eqs.(1) through (3)for the frame are given by Gao and Haldar(1995) and are not repeated here due to lack of space. A fournode plane stress element is used to incorporate the presence of shear walls in the frame. An explicit expression of the stiffness matrix of the plate elements is necessary for efficient reliability analysis. To achieve this, the shape of the shear wall 畢業(yè)設(shè)計(jì)論文網(wǎng) : 43 is restricted to be rectangular. Two displacement (horizontal and vertical) dynamic degrees of freedom are used at each node point. These are plane stress elements. Based on an extensive literature review and discussions with experts on finiteelement methods, it was concluded that the rotation at a node point could be overlooked. The rotation of the bined system at the node point is expected to be very small and was independently verified using a mercially available puter program discussed later. To bring the shear wall stiffness into the frame structure, the ponents of the shear wall stiffness are added to the corresponding frame stiffness ponents in Eq. (1). The explicit form of a stiffness matrix of a fournode plane stress element can be obtained as (Lee 2021) where 2a and 2b= long and short dimensions of the rectangular shear wall, respectively, t= thickness of the wall, g= the ratio of b and a。 Finite element method. Introduction The realistic reliability analysis of plicated structural systems consisting of different types of structural elements and materials is a major challenge to our profession. In most cases, the limit state or performance function (a functional relationship between the load and resistancerelated variables and the performance criterion) is implicit in evaluating the reliability of such systems. The analytical technique most frequently used to capture the mechanical behavior of plicated structural systems consisting of different materials appears to be the finiteelement method (FEM)based approach. Finiteelement analysis is a powerful tool monly used in many engineering disciplines to analyze simple or plicated structural systems. With this approach, it is straightforward to consider plicated geometric arrangements, various sources of nonlinearity, different materials, and the load path to failure. However, the deterministic finiteelement method fails to consider the uncertainty in the variables, and thus cannot be used for reliability analysis. On the other hand, the available reliability methods fail to represent structures as realistically as possible. If the basic variables are uncertain, every quantity puted during the deterministic analysis is also uncertain. The currently available reliability methods can still be used if the uncertainty in the response can be tracked in terms of the variation of the basic variables at every step of the deterministic analysis. To capture the desirable features of these two approaches, they needed to be bined, leading to the concept of the stochastic finiteelement method (SFEM) (Haldar and Mahadevan 2021b)。 Static loads。 Simulation。 ,上腳手架作業(yè)人員要穿防滑鞋,如發(fā)現(xiàn)問題,及時(shí) 修補(bǔ)。 ,雨停之后進(jìn)行漏電測試。施工前應(yīng)把冬季施工保證措施和施工要求,報(bào)現(xiàn)場監(jiān)理工程師批準(zhǔn)后實(shí)施。 ,做好防寒保溫措施。 畢業(yè)設(shè)計(jì)論文網(wǎng) : 37 表 31: 第Ⅰ工程段工程量計(jì)算表 構(gòu)件名稱 構(gòu)件數(shù)量 混凝土 (m3) 鋼筋 (噸 ) 模板 (m2) 每件 總計(jì) 每件 總計(jì) 每件 總計(jì) 柱 18 主梁 1號(hào) 8 2號(hào) 8 3號(hào) 5 4號(hào) 4 5號(hào) 4 6號(hào) 2 次梁 1號(hào) 2 2號(hào) 2 3號(hào) 2 4號(hào) 2 5號(hào) 1 樓板 1 表 32: 第 Ⅱ(Ⅲ) 工程段工程量計(jì)算表 構(gòu)件名稱 構(gòu)件數(shù)量 混凝土 (m3) 鋼筋 (噸 ) 模板 (m2) 每件 總計(jì) 每件 總計(jì) 每件 總計(jì) 柱 1號(hào) 12 2號(hào) 1 主梁 1號(hào) 12 2號(hào) 4 3號(hào) 3 4號(hào) 2 5號(hào) 1 次梁 1號(hào) 4 2號(hào) 3 3號(hào) 2 樓板 1 墻 1號(hào) 2 2號(hào) 1 3號(hào) 1 4號(hào) 1 畢業(yè)設(shè)計(jì)論文網(wǎng) : 38 表 33: 現(xiàn)場主要施工機(jī)械設(shè)備投入計(jì)劃表 序 號(hào) 用電設(shè)備名稱 型號(hào) 單機(jī)設(shè)備 用電量 (Kw) 設(shè)備投入 總量 (臺(tái) ) 需要系數(shù) K 該設(shè)備用電 總量 (Kw) 1 塔吊 F0/23B, L=50m 70 1 1 70 2 插入式振搗棒 ?50, ?30 20 3 直螺紋設(shè)備 —— 3 10 18 5 平板式振動(dòng)器 —— 2 6 鋼筋切斷機(jī) —— 4 7 電焊機(jī) BS9500 8 8 潛水泵 —— 2 9 鋼筋彎曲機(jī) GW32 3 10 鋼筋彎箍機(jī) GGJ12 1 11 電動(dòng)除銹機(jī) —— 1 12 鋼筋調(diào)直機(jī) GT4*10 1 13 冷擠壓機(jī) —— 2 4 14 空壓機(jī) —— 2 15 平刨機(jī) —— 4 2 16 壓刨機(jī) —— 4 2 17 圓盤鋸 —— 2 18 砼振動(dòng)臺(tái) —— 1 19 現(xiàn)場照明及辦公 —— 50 1 40 合計(jì) 詳見現(xiàn)場平面圖 ( 附圖 87) 。 現(xiàn)場布置一臺(tái)塔吊,詳細(xì)位置見現(xiàn)場總平面土。 。 參照結(jié)構(gòu)平面圖和設(shè)計(jì)圖,計(jì)算構(gòu)建所需材料量,見表 31 和表 32。在各層分段施工時(shí),每一層周圈搭設(shè)工作面,工作面滿鋪腳手板,并搭設(shè)防護(hù)欄桿,掛安全網(wǎng)。第二層的腳手架生根于二層平臺(tái)板,間距不變,斜撐不變,只是在平臺(tái)梁四周以斜撐形式外挑腳手架,外挑寬度 600mm。 腳手管的專用托架,并可利用絲桿的調(diào)節(jié)將腳手管的標(biāo)高做微小調(diào)整,以達(dá)到 設(shè)計(jì)標(biāo)高 。排木的搭設(shè),在腳手架臨近標(biāo)高時(shí),使用專用的絲桿式腳手管,這種腳手管上有架設(shè) 100179。立桿間距 ,但在各層連梁和框架各道主梁下立桿間距 ,立桿下部墊道木或 腳手板防止沉降。注意立桿下必須加墊枕木或鐵板,以防止地基沉降出現(xiàn)梁板向下?lián)锨默F(xiàn)象。 框架結(jié)構(gòu)施工采用搭設(shè)滿堂紅腳手架支設(shè)模板的加固方法。 待 澆灌 下一節(jié)的 混凝土?xí)r,畢業(yè)設(shè)計(jì)論文網(wǎng) : 36 應(yīng)先清理表面的浮動(dòng)物件及塵土,并澆水濕潤,且不得有積水澆一層 20MM 厚與混凝土同比例的水泥砂漿。澆注完后板的表面用要木末子抹平。梁板內(nèi)的混凝土澆注采用退式澆搗,為了防止混凝土表面產(chǎn)生麻面現(xiàn)象在底部應(yīng)先澆入 50mm 厚的水泥砂漿。先澆注柱子的混凝土并在柱頭留施工縫,因柱子長度較長,在柱子內(nèi)設(shè)置溜管以防止離析。使上下振搗均勻,確保質(zhì)量。澆注時(shí)注時(shí)采用機(jī)械振搗的方法,振搗應(yīng)派專人操作, 使用振搗棒時(shí)“快插慢拔”,標(biāo)點(diǎn)均勻排列,逐點(diǎn)移動(dòng)。 2%。 5%;粗細(xì)骨料177。取樣與試件留置應(yīng)符合下列規(guī)定: 每拌制 100 盤且不超過 100m3的同配合比的混凝土,取樣不得少于一次 ;每工作班拌制的同一配合比的混凝土不足 100 盤時(shí),取樣不得少于一次;當(dāng)一次連續(xù)澆筑超過 1000m3時(shí),同一配合比的混凝土每 200m3取樣不得少于一次;每一樓層、同一配合比的混凝土,取樣不得少于一次;每次取樣應(yīng)至少留置一組標(biāo)準(zhǔn)養(yǎng)護(hù)試件,同條件養(yǎng)護(hù)試件的留置組數(shù)應(yīng)根據(jù)實(shí)際需要確定。 。鋼筋混凝土結(jié)構(gòu)中,當(dāng)使用含氯的外加劑時(shí),混凝土中的氯化物的總含量應(yīng)符合現(xiàn)行國家標(biāo)準(zhǔn)的規(guī)定。 現(xiàn)行國家標(biāo)準(zhǔn)和有關(guān)環(huán)境保護(hù)的規(guī)