【摘要】1、已知:如圖,△ABC中,AB=AC,(1)∠B=50°,則∠C=________(2)∠B=60°,則△ABC為_____三角形(有一個角為60°的等腰三角形是正三角形)ABC50°正2、已知:△ABC中,∠B=∠C,
2024-11-28 17:31
【摘要】小學(xué)語文新課程遠程教育培訓(xùn)體會重慶市奉節(jié)師范附屬小學(xué)盧先瓊暑假,我參加了語文新課程遠程培訓(xùn)。雖然只有短短的幾天,但培訓(xùn)所給予我的啟發(fā)和經(jīng)驗卻是一筆永久的財富。通過聽專家的評論提高了自己的理論水平,通過作業(yè),網(wǎng)上交流對新課程有了新的認識。一些對教育教學(xué)工作很有見解的教師以鮮活的教學(xué)課堂和豐富的知識內(nèi)涵,給了我
2024-11-28 17:30
【摘要】等腰三角形的性質(zhì)龍居九義校:李小萍總結(jié)大家觀察的幾種三角形:有什么共同點?有兩條邊相等等腰三角形的概念:有兩條邊相等的三角形是等腰三角形。結(jié)合以下圖形,指出等腰三角形的腰,底邊,頂角,底角。兩腰的夾角叫做頂角,腰和底邊的夾角叫做底角。等腰三角形中,相等的兩邊都叫腰,另一邊叫做底邊。等腰
【摘要】如圖,在△ABC中,AB=AC.DAD⊥BCBD=CD∠BAD=∠CADAD是BC上的高線AD是BC上的中線AD是∠BAC的平分線性質(zhì)1、等腰三角形的兩底角相等:∠B=∠C性質(zhì)2、等腰三角形三線合一性質(zhì)3、等腰三角形是軸對稱圖形,
2024-08-16 10:34
【摘要】等腰三角形性質(zhì)的應(yīng)用——復(fù)習(xí)課如圖,在△ABC中,AB=AC,點D在AC上,且BD=BC=AD,求△ABC各角的度數(shù)。ABCD121.等邊對等角的應(yīng)用ABCD12解:∵AB=AC,∴∠ABC=∠C又∵BD=BC=AD,∴∠C=∠
2024-11-28 15:15
【摘要】八年級上冊等腰三角形(第2課時)問題等腰三角形性質(zhì)定理的內(nèi)容是什么?這個命題的題設(shè)和結(jié)論分別是什么?性質(zhì)定理的條件是:一個三角形中有兩條邊相等.結(jié)論:這兩條邊所對的角相等.探索等腰三角形的判定定理作頂角的平分線或底邊上的高或底邊的中線,將一個三角形的問題轉(zhuǎn)化為兩個全等三
【摘要】動手做一做ACB△ABC有什么特點?看一看有兩條邊相等的三角形叫做等腰三角形.等腰三角形中,相等的兩邊都叫做腰,另一邊叫做底邊,兩腰的夾角叫做頂角,腰和底邊的夾角叫做底角.ACB腰腰底邊頂角底角底角1、等腰三
2024-12-11 15:39
【摘要】等腰三角形的判定一、復(fù)習(xí):1、等腰三角形的性質(zhì)定理是什么?等腰三角形的兩個底角相等。(可以簡稱:等邊對等角)2、這個定理的逆命題是什么?如果一個三角形有兩個角相等,那么這個三角形是等腰三角形。3、這個命題正確嗎?你能證明嗎?導(dǎo)入新課如圖,位于在海上A、B兩處的兩艘救生船接到O處遇險船只的報警
2024-11-26 01:45
【摘要】等腰三角形羅源三中黃招良圖中有些你熟悉的圖形嗎?圖中有些你熟悉的圖形嗎?它們有什么共同特點?北京五塔寺西安半坡博物館斜拉橋梁體育觀看臺架埃及金字塔
2024-08-12 13:41
【摘要】(n-2)×180°三角形與三角形有關(guān)的線段a-b<c<a+b(a-b>0)高三角形的邊三角形的三邊關(guān)系中線角平分線的定義位置、交點三角形的內(nèi)角和多邊形的內(nèi)角和多邊形的外角和三角形的外角和多邊形外角和為360°鑲嵌的原理
2024-12-11 16:28
【摘要】等腰三角形從數(shù)學(xué)的觀點去思考,你觀察到了什么圖形?魁星閣金字塔侗寨吊腳樓等腰三角形一.基本概念:兩條邊相等的三角形叫做等腰三角形.如圖AB=AC,就是等腰三角形ABC?:相等的兩邊叫做腰另一邊叫做底邊兩腰的夾角叫做頂角腰和底邊的夾角
【摘要】等腰三角形的性質(zhì)倉山鎮(zhèn)中蔣良全復(fù)習(xí)已知:∠A(如右圖)求作:射線AD,使AD平分∠A.基本作圖:平分已知角A實驗研究等腰三角形是一種特殊的三角形,它除具有一般三角形的性質(zhì)外,還有一些特殊性質(zhì).DACBACBDACB猜想
2024-11-28 15:54
【摘要】ABC等邊對等角三線合一等角對等邊兩邊相等兩腰相等軸對稱圖形知識回顧“三線合一”的逆用(正三角形)等邊三角形:三條邊都相等的三角形.等邊三角形是特殊的等腰三角形.學(xué)習(xí)園地在等腰三角形中,有一種特殊的情況,就是底邊與腰相等,這時,三角形三邊相等。1
2025-01-01 20:28
【摘要】ACB腰腰底邊頂角底角底角一起回憶復(fù)習(xí)概念在△ABC中(1)∵AB=AC,AD⊥BC,∴∠___=∠___,____=____;(2)∵AB=AC,AD是中線,∴∠_=∠_,____⊥____;(3)∵AB=AC,AD是角平分線,∴____⊥____,____=
2024-08-26 20:34
【摘要】探索·合作·創(chuàng)新三步五環(huán)教學(xué)法張麗紅學(xué)習(xí)目標探索·合作·創(chuàng)新三步五環(huán)教學(xué)法、等邊三角形的性質(zhì)和判定進行簡單的計算、推理證明。,構(gòu)建等腰三角形的知識體系。,數(shù)形結(jié)合,轉(zhuǎn)化,方程等數(shù)學(xué)思想方法。探索·合作·創(chuàng)新三步五環(huán)教學(xué)法名
2024-11-28 13:18