【正文】
。澆鑄后,兩根梁負(fù)荷了近300天,總收縮應(yīng)變的90%已經(jīng)完成。用源于梁一的最終徐變系數(shù)去分析梁二是一個(gè)有根據(jù)的設(shè)想,因?yàn)閮筛菏怯猛慌炷镣瑫r(shí)澆鑄而成,且在相同環(huán)境下進(jìn)行加載實(shí)驗(yàn)。對(duì)控制梁一而言,調(diào)整混凝土最終徐變系數(shù),提供一個(gè)最小二乘方以最佳匹配它的繞度預(yù)測(cè)值和實(shí)驗(yàn)測(cè)試值。m)。開(kāi)裂彎矩值的巨大差異凸顯了碳纖維貼片的加固效果。后面計(jì)算兩根梁跨中長(zhǎng)期繞度要用最終開(kāi)裂彎矩。這些開(kāi)裂彎矩最佳擬合了代表梁繞度(跨中直接繞度測(cè)量相對(duì)于自重繞度)的測(cè)試值,而不是源于混凝土的開(kāi)裂強(qiáng)度。用CEBFIP 和 ACI分析繞度預(yù)言的結(jié)果第一次用CEBFIP方法來(lái)預(yù)測(cè)兩跟梁的跨中的直接繞度。兩種方法的目的都是為了評(píng)估梁的長(zhǎng)期繞度受影響于混凝土的徐變和收縮。所以時(shí)程分析和有限元模型得到發(fā)展,并用他們檢驗(yàn)混凝土徐變和環(huán)氧基樹(shù)脂蠕變對(duì)長(zhǎng)期繞度的影響。首先,運(yùn)用CEBFIP 和ACI的簡(jiǎn)單程序。這份觀察報(bào)告與Choi et ,也證實(shí)了環(huán)氧基樹(shù)脂大部分蠕變發(fā)生在相對(duì)比較早的時(shí)期內(nèi)。在2470天內(nèi),貼片整個(gè)長(zhǎng)度范圍內(nèi)的平均滑移量接近60微應(yīng)變,這意味著貼片的應(yīng)力平均損失9Mpa,相當(dāng)于每條帶損失1KN的力。從加載起,碳纖維貼片一個(gè)末端的運(yùn)動(dòng)就基本穩(wěn)定,只有很小一部分運(yùn)動(dòng)是逐步發(fā)生于另一末端的。從觀察到的徐變變化率變化,我們相信徐變變化率具有季節(jié)性,并隨相對(duì)濕度而變化。然而,在同一實(shí)驗(yàn)室的同一階段,Hall 和Ghali在裂縫試驗(yàn)中記下了相對(duì)濕度。在徐變系數(shù)計(jì)算中用CEBFIP,當(dāng)相對(duì)濕度增加,徐變系數(shù)降低,意味在相對(duì)濕度大的時(shí)間段徐變?cè)鲩L(zhǎng)率降低。相似的趨勢(shì)在梁跟梁上都有發(fā)生。繞度曾長(zhǎng)率隨時(shí)間是變化的。對(duì)于梁二的跨中繞度并不像梁一那樣被“清楚理解”。與梁一相比,梁二的長(zhǎng)期撓度構(gòu)成其直接繞度的比例比梁一大。長(zhǎng)期繞度是由于混凝土徐變是直接繞度的一個(gè)函數(shù),它與梁截面的剛度和裂縫情形有關(guān)。粘結(jié)于梁二的碳纖維貼片的末端的相對(duì)滑移量與時(shí)間相對(duì)應(yīng)的圖如圖3所示。兩根梁的跨中長(zhǎng)期繞度(總繞度減去初始繞度)如圖2所示。碳纖維貼片顯著提高了梁二抗裂彎矩。因此,彎矩值恒定區(qū)段的混凝土必須先有很多的小裂縫以使FRP條的應(yīng)力保持不變。FRP條必須保持平衡,因此,F(xiàn)RP條大規(guī)??焖俚暮痛蟮淖兓遣豢赡艿?。這是因?yàn)樵诮孛鎻澗夭蛔兊膮^(qū)域FRP條的張拉應(yīng)變保持不變。第一次加載的時(shí)候,在梁二上沒(méi)有觀察到彎曲裂紋。實(shí)驗(yàn)結(jié)果與討論一經(jīng)加載。在加載后的第一個(gè)24小時(shí)內(nèi)要多次記錄數(shù)據(jù),然后在第一個(gè)月內(nèi)要每天記錄一次數(shù)據(jù),最后逐漸是每3天、每周、每?jī)芍艿礁L(zhǎng)的時(shí)間段記錄一次數(shù)據(jù)。然后拿走液壓千斤頂。荷載是通過(guò)懸掛混凝土塊于每根梁上表面。對(duì)于梁一,預(yù)計(jì)荷載將使梁受拉區(qū)混凝土開(kāi)裂,但是受壓區(qū)混凝土的應(yīng)力和受拉區(qū)鋼筋的應(yīng)力還處在彈性階段。使之產(chǎn)生4個(gè)點(diǎn)的彎曲。小心地把彈簧儀表的偏移尖端定位于碳纖維貼片暴露的末端。梁由于自重,在跨中產(chǎn)生繞度,該繞度可以用安裝在輕跨度為3200mm鋼架上的千分表測(cè)量。碳纖維貼片在順纖維方向的彈性模量為165Gpa,抗拉強(qiáng)度為2800Mpa(生產(chǎn)廠家提供的數(shù)據(jù))。在梁二的每個(gè)剪跨處,碳纖維貼片以U型形式包裹著梁的兩側(cè)和受拉面。梁一被設(shè)計(jì)為參照樣本,采用環(huán)氧粘合劑把兩根碳纖維復(fù)合材料條粘于梁二的受拉面表面。 MPa,該值是從直徑為100mm,高 200mm的圓柱測(cè)量而得,而這批圓柱是用澆筑梁的同一批混凝土澆筑而成。)加強(qiáng)。實(shí)驗(yàn)項(xiàng)目測(cè)試樣品和材料兩跟相似的鋼筋混凝土梁是由同一批混凝土澆筑而成(圖一)。已報(bào)道的實(shí)驗(yàn)方案的目的是確認(rèn)環(huán)氧樹(shù)脂蠕變的存在,而不是復(fù)制一個(gè)實(shí)用的改造方案。實(shí)驗(yàn)和分析工作的執(zhí)行顯示:情況更加復(fù)雜。它被認(rèn)為能消除玻璃鋼條的壓力,在持續(xù)荷載作用下,一個(gè)適用性的觀點(diǎn)認(rèn)為它能使玻璃鋼條效應(yīng)減弱。在此,我們使用兩種不同的方法來(lái)確定環(huán)氧基樹(shù)脂的蠕變是否能解釋所觀察到的梁的不同現(xiàn)象:一步一步的時(shí)間分析,允許混凝土和環(huán)氧基樹(shù)脂在每個(gè)時(shí)間步內(nèi)的蠕變?cè)隽窟_(dá)到平衡,有限元(FE)與剪切流模型允許在環(huán)氧膠粘劑層。蠕變機(jī)理被期待為環(huán)氧基樹(shù)脂的一種簡(jiǎn)單的流體剪切應(yīng)力,即發(fā)展到在玻璃鋼條和混凝土之間產(chǎn)生應(yīng)力的程度。當(dāng)僅考慮混凝土蠕變時(shí),從測(cè)量簡(jiǎn)單梁的蠕變變形,不能預(yù)測(cè)有玻璃鋼條加固的梁的蠕變變形。Hall and Ghali的提議把實(shí)測(cè)繞度和用ACI and CEBFIP的方法預(yù)測(cè)的繞度進(jìn)行比較。在這方面,實(shí)驗(yàn)研究結(jié)果以及瞬時(shí)的和伴隨時(shí)間發(fā)生的梁繞度分析預(yù)測(cè)都被描述了。也就是說(shuō),假定梁的受拉面和玻璃鋼條之間是理想的約束和協(xié)調(diào)的應(yīng)變。類似的方法被用于混凝土箱梁在抗壓凸緣的復(fù)合玻璃碳纖維增強(qiáng)聚合物(GFRP)與和粘結(jié)于張拉面的碳纖維增強(qiáng)聚合物(CFRP)。對(duì)(用玻璃鋼條加固于混凝土梁外表面的)梁的隨時(shí)間發(fā)生的行為(蠕變和收縮)的研究還很少。同樣,正如最近一些研究者推薦的那樣,如果給玻璃鋼條施加預(yù)應(yīng)力,蠕變可以減弱原始的內(nèi)力。這些玻璃鋼條可能被機(jī)械的錨固于RC梁梁端附近或者被附加抗剪鋼筋支撐于梁端附近,通常采用U字型的玻璃鋼條。一種普及的應(yīng)用,廣泛使用于實(shí)踐之中,那就是在普通鋼筋混凝土受拉面粘結(jié)玻璃鋼條以增加梁的抗彎能力。兩種分析方法表明:粘結(jié)層蠕變能解釋預(yù)測(cè)和實(shí)際行為之間差異的現(xiàn)象。玻璃鋼條加固梁的蠕變變形并不像從控制標(biāo)本梁所預(yù)測(cè)的那樣。在玻璃鋼條的兩端的滑移也被監(jiān)測(cè)了。兩根梁均持續(xù)負(fù)荷超過(guò)61/2年。 and (b) Beam 2, considering bined effect of creep of concrete and creep of epoxy adhesive.論文翻譯普通鋼筋混凝土梁和纖維增強(qiáng)聚合物加固的鋼筋混凝土梁的徐變效應(yīng)監(jiān)測(cè)了兩根具有相同尺寸和材料性能的RC梁的長(zhǎng)期繞度行為。 therefore, rapid and large variations in force in the strip are not possible, as there is no mechanism to acmodate such stress variation. Hence, the concrete in the constantmoment section has to crack with a large number of very thin cracks so that the strain in the FRP remains constant. Several months after loading, a thin flexural crack could be seen extending from the tension face of Beam 2 close to the beam midspan. The CFRP strips significantly increased the cracking moment capacity of Beam 2. Although not tested, the additional FRP reinforcement was also expected to increase the ultimate moment capacity of the beam.The longterm midspan deflections (total deflection minus the initial deflection) of both beams are shown in Fig. 2, plotted versus time after loading up to 2470 days of loading. The relative slip movements versus time at each end of one of the CFRP strips bonded to Beam 2 are shown in Fig. 3. Several observations can be made:1. The longterm deflection of Beam 2 is significantly less than that of Beam 1. Longterm deflection due to concrete creep is a function of the immediate deflection, which depends on crosssectional stiffness and cracking status. Beam 1 cracked much sooner than Beam 2.2. The longterm deflection of Beam 2 constitutes a larger proportion of its immediate deflection pared with Beam 1. Plevris and Triantafillou2 observed a similar response in beams externally reinforced with FRP strips pared to their control specimen (no FRP).3. The midspan deflection for Beam 2 does not appear to be “catching” that of Beam 1. That is, at first appearance, there is no indication that the CFRP reinforcement is unloading, thereby being ineffective against the sustained load.4. The rate of increase of deflection changes with time. This is particularly evident when pared to the smooth curves of predicted longterm deflections discussed and presented in the following sections (Fig. 2, 4, and 5). Similar trends occur for both beams. The periods of reduced rate of increase of deflection coincide with the summer months and those of increased creep coincide with the winter months. In the calculation of creep coefficient using CEBFIP,10 the creep coefficient reduces as the relative humidity increases, implying a reduced rate of creep during periods of higher relative