【摘要】x_______時,有意義.這樣的兩個二次根式,稱為同類二次根式。說明:(1)被開方數(shù)相同。(2)二次根式不能再化簡。(3)與二次根式的系數(shù)無關(guān)。下列各組里的二次根式是不是同類二次根式?合并同類二次根式計算閱讀P10~P11例1、例2計算:課堂練
2024-11-16 00:07
【摘要】看下面問題:二次根式的加減法上次更新:2022年8月31日星期三第五節(jié)二次根式的加減法1.下列二次根式中哪個是最簡二次根式?哪個不是?為什么?3212, 3212與2.的形式與實質(zhì)是什么?3532?3.,可以化簡嗎?4.,可以化簡嗎?7512?同類二次根式定
2024-08-26 20:29
【摘要】5m一、創(chuàng)設(shè)情境,引入新課小明家的客廳是長,寬5m的長方形,他要在客廳中截出兩個面積分別為8㎡和18㎡的正方形鋪不同顏色的地面磚,問能否截出?m18m8m)188(?(1)大小兩個正方形的邊長分別是多少?(2)客廳夠?qū)拞???)客廳夠長嗎?<5,夠?qū)?8188?232
2024-11-26 02:30
【摘要】求下列各數(shù)的平方根和算術(shù)平方根.9的平方根,算術(shù)平方根,算術(shù)平方根0的平方根,算術(shù)平方根003復(fù)習(xí)回顧a(a≥0)的平方根,算術(shù)平方根是.一個正數(shù)有兩個平方根;
2024-11-10 15:38
【摘要】練習(xí)、當(dāng)x取何值時,下列二次根式有意義:22)3x()4( x2x)3(x311)2( 1x2)1(????a311a)5(???一.二次根式的概念及意義.形如(a≥0)這樣的式子叫做二次根式,其中a可以是數(shù),也可以是單項式和多項式.
2024-11-15 12:56
【摘要】二次根式的應(yīng)用學(xué)習(xí)目標(biāo):。(組)。一、比較兩個數(shù)的大小。例和的大小。性質(zhì):當(dāng)a0,b0時,如果,那么ab。解:。分析:例和
【摘要】????????????22221416236256330000413125()6abcbaab?????化簡:????????????71885231894548111011
【摘要】方的因數(shù)或因式1:下列二次根式中哪些是最簡二次根式?哪些不是?為什么試一試45)2(15)1(, .23)4(,)3(yxyxab224)6(2)5(?, 練習(xí):下列二次根式中哪些是最簡二次根式?哪些不是?為什么做一做,11)3(.,32)2(,12)1(,2323)6(,)5
2024-11-22 21:20
【摘要】x_______時,有意義.x?2.____423)2(___;3233)1(:.4_____;423)2(____;23)1(:.3_____;24____;31:.2????????????aaayyyxx猜想計算化簡8)4(12)3(27)2(18)
2024-11-25 00:01
【摘要】二次根式的加減2Zxx``k練習(xí):下列計算是否正確?為什么?8383???(1)32222??(4)916916???(3)4949???(2)(1)(2)錯誤,(3)(4)正確.火眼金睛例題講解例1計算:
2024-11-25 01:23
【摘要】化簡:二次根式除法法則:兩個二次根式相除,將它們的被開方數(shù)相除的商,作為商的被開方數(shù);二次根式化簡后,被開方數(shù)不含分母,并且被開方數(shù)中所有因式的冪的指數(shù)小于2,像這樣的二次根式稱為最簡二次根式.二次根式的化簡要求滿足以下兩條:(1)被開方數(shù)的因數(shù)是整數(shù),因式是整式,也就是說“被開方數(shù)不含分
2025-08-04 17:33
【摘要】.的式子叫做二次根式形如a)0(?a二次根式的定義:二次根式的性質(zhì):(雙重非負(fù)性.0,0??aa復(fù)習(xí)回憶?2)4(?2)(?2)31(?2)0(??aa?2(a≥0)0431例2:計算222(1)(1.5)(2)(25)(3)(33)
2024-11-16 02:38
【摘要】重點、難點(0).aa?形如的式子叫做二次根式2.a可以是數(shù),也可以是式.3.形式上含有二次根號4.a≥0,≥0a,也可表示運算的結(jié)果.a的算術(shù)平方根(雙重非負(fù)性)xx1)4(4)3(21、x取何值時,下列二次根式有意義?xx
【摘要】二次根式的概念251.16的平方根是;2.9的算術(shù)平方根是;3.的平方根是;±43±51.表示什么??為什么?a?a≥0,因為任何一個有理數(shù)的平方都大于或等于零.?當(dāng)a是正數(shù)時,表示a的算術(shù)平方根,即正數(shù)a的正的平方根
【摘要】第一篇:二次根式加減法教學(xué)反思 二次根式加減教學(xué)反思 鞍山市達(dá)道灣學(xué)校 康鑫本課時內(nèi)容是二次根式加減法的計算,教學(xué)方法上以類比法,講練結(jié)合為主。通過引導(dǎo)學(xué)生自主探究,,培養(yǎng)學(xué)生計算能力。 教學(xué)...
2024-10-24 19:04