【正文】
參考文獻(xiàn):[ 1 ] Geim A K, Novoselov K S. T he ri se of graphen e[ J] . Natu remat erial, 2007, 6: 183??191.[ 2] Novos elov K S, Geim A K, Moroz ov S V, et al. Elect ric fi eldef f ect in at omically th incarbon film s[ J] . Scien ce, 2004, 306:666??669.[ 3 ] Berger C, Song Z, Li T , et al. Ul t rathin epitaxial graphit e: 2Del ect ron gas propert ies and a rout e tow ard graph ene bas ednanoel ect ronics [ J] . J Phys Ch em B, 2004, 108: 19912?? 19916.[ 4 ] Berger C, Song Z, Li T , et al. E lectr on conf inem ent and coh er??ence in pat t ern ed epitaxial graphene[ J ] . Science, 2006, 312:1191??1196.[ 5 ] Kon st ant in V E, Aaron B, Kar st en H , et al. Towards w af ersiz e graph ene layers by atmos pheri c pressu regrap hitizat ion of sili concarbide[ J] . Natu re Materials, 2009, 8: 203??207.[ 6 ] Pan Y, Zhang H , S hi D, et al. H ighl y ordered, millim et er??scale, cont inuous , singl e?? cryst alline graphene monolayer f orm ed on Ru ( 0001) [ J] . Adv Mat er, 2009, 21: 2777?? 2780.[ 7 ] Kim K, Zhao Y, J ang H , et al. Large??s cale pat tern grow th ofgraphen e films f or s tr etchable t ransparent el ect rodes [ J ] . Nature, 2009, 457: 706?? 710.[ 8 ] Dachen g Wei, Yun qi Liu, Hongl iang Zhang, et al. Scalables ynthes is of few??Layer grap hene rib bons with cont roll ed m or??ph ol ogi es by a t empl at e m ethod and their appli cat ions in nanoelect rom ech ani cal swit ches [ J ] . J Am Ch em S oc, 2009, 131( 31) : 11147 11154.[ 9 ] H umm ers W, Of f eman R E. Pr eparat ion of graphit ic oxide[ J] .J Am Chem Soc, 1958, 80: 1339.[ 10] Li D, Mul ler M B, Gilj e S, et al. Proces sab le aqueou s dispersion s of graphen e nanosheet s [ J ] . Natu re Nanot ech nology,2008, 3: 101?? 105.[ 11] Vin cen t C T, Matth ew J A, Yang Y, et al . Highthroug hputs olut ion p roces sing of large??s cal e graph ene [ J ] . Nature Nano??t echnology, 2009, 4: 25??29.[ 12] Shen J , H u Y, Sh i M, et al . Fas t and facile prepar at ion of gra??ph ene oxide and redu ced graphen e oxide nanoplat el et s [ J ] .Ch em Mat er, 2009, 21( 15) : 3514??3520.[ 13] L i X, Zhang G, Bai X. Highly conducting graphene sh eet s and Langmuir Blodgett fi lms [ J] . Nature Nanot echnology, 2008, 3:538??542.[ 14] Qian H, Wang Z, Yue W, et al. Except ion al coupling of t et rach loroperyl ene b isimide: Combinat ion of U llmann react ion and C??H T ran sf ormat ion [ J ] . J Am Chem Soc, 2007, 129 ( 35 ) :10664??10665.[ 15] Qian H , Negri F, Wang C, et al. Fu lly con jugat ed t ri( peryl enebi simides) : An approach t o the cons t ruct ion of n??t ype graph enenanoribb on s[ J] . J Am Chem S oc, 2008, 130( 52) : 17970??17976.[ 16] Dmit ry V. Kosyn kin1 A L, Higginboth am J, et al. Lon gitu dinal unzipping of carb on nanotubes t o f orm graph ene nan orib??bons [ J] . Natu re, 2009, 458: 872??876.[ 17] J iao L, Zhang L, Wang X, et al. Narrow graphene nan orib??b on s from carbon nanotu bes [ J] . Nature, 2009, 458: 877?? 880.[ 18] Gupt a A, Ch en G, Jos hi P, et a1. Raman s cat t ering f rom high??frequen cy phonons in support ed n?? graph ene layer film s [ J ] .Nano Let t , 2006, 6(12) : 2667??2673.[ 19] T homsen C, Reich S. Dou ble Res on ant Raman Scat tering inGraphit e[ J] . Ph ys Rev Lett , 85( 24) : 5214?? 5217.[ 20] Gao L, Ren W, Ch eng H , et al. T ot al color dif f erence for rapidand accu rat e ident if icat ion of graph ene [ J ] . Acs Nano, 2008, 2 ( 8) : 1625??1633.[ 21] Georgios K D, Emm anu el T , George E F. Pil lared graphene:A new 3??D netw ork nanost ructu re for enhanced h ydrogen st or??age[ J] . Nano Let t , 2008, 8( 10) : 3166??3170.[ 22] Ryan M, Brian S, Prashant V K, et al. Decorat ing graphene sheet s w ith gold nan opart icl es [ J ] . J Phys Chem C, 2008, 112( 14) : 5263??5266.[ 23] Li Q, Li Z, C hen M, et al. Realt ime study of graphen e% sphase trans ition in polymer mat rices [ J ] . Nano Let t , 2009, 9( 5) : 2129??2132.[ 24] Kyl e A R, Jos eph W L. T he inf luence of edge st ructur e on the elect ronic propert ies of graphene quan tum dot s and nan orib bons [ J] . Natu re Mat erial s, 2009, 8: 235??242.[ 25] Elias D C, Geim A K, Novoselov K S , et al. Cont rol of grap hen e39。因此, 通過不同途徑設(shè)計(jì)和批量制備大尺寸、層數(shù)和性能可控的石墨烯是下一步制備技術(shù)研究的重點(diǎn)。綜上所述, 目前的制備技術(shù)存在石墨烯尺寸小且分布不均、難以批量生產(chǎn)以及性能難以精確控制等瓶頸問題。由于具備完美結(jié)構(gòu),石墨烯還能用來制造超靈敏的感應(yīng)器,即使是最輕微的污染也能察覺。在塑料里摻入百分之一的石墨烯,就能使塑料具備良好的導(dǎo)電性;加入千分之一的石墨烯,能使塑料的抗熱性能提高30攝氏度。Yang 與Kaner 新開發(fā)的將兩種材料混合的方法具有簡(jiǎn)易、廉價(jià)的特點(diǎn), 產(chǎn)品可滿足多種需要材料具有柔軟性的場(chǎng)合, 如這種混合材料是高分子太陽能薄膜電池電極的理想候選材料。他們表示, 對(duì)于帶有活動(dòng)部件的電器設(shè)備, 石墨烯和碳納米管混合材料是銦錫氧化物理想的高性能替代品, 完全可與目前常用的銦錫氧化物相媲美。未來的晶體管將會(huì)由純凈的具有高導(dǎo)電性的石墨烯和經(jīng)過化學(xué)改進(jìn)的具有半導(dǎo)體性能的石墨烯衍生物一起組成。Elias 等[ 25] 用純凈的石墨烯和氫制備出了一種具有絕緣性能的二維晶體石墨烯衍生物石墨烷。海姆和諾沃肖洛夫已于2008年制造出1個(gè)原子厚、10個(gè)原子寬的晶體管。晶體管的尺寸越小,其性能越好。另一方面,它非常致密,即使是氦原子——最小的氣體原子也無法穿透。石墨烯的導(dǎo)電性比銅更好,導(dǎo)熱性遠(yuǎn)超一切其他材料。同時(shí)它又有很好的彈性,拉伸幅度能達(dá)到自身尺寸的20%。 這種物質(zhì)不僅可以用來開發(fā)制造出紙片般薄的超輕型飛機(jī)材料、制造出超堅(jiān)韌的防彈衣?! ?jù)科學(xué)家稱,石墨烯除了異常牢固外,還具有一系列獨(dú)一無二的特性,石墨烯還是目前已知導(dǎo)電性能最出色的材料,這使它在微電子領(lǐng)域也具有巨大的應(yīng)用潛力。為了激勵(lì)科學(xué)家發(fā)明出制造太空電梯纜線的堅(jiān)韌材料,美國NASA此前還發(fā)出了400萬美元的懸賞。它不僅可以開發(fā)制造出紙片般薄的超輕型飛機(jī)材料、可以制造出超堅(jiān)韌的防彈衣,甚至還為“太空電梯”纜線的制造打開了一扇“阿里巴巴”之門?;_教授用一種形象的方法解釋了石墨烯的強(qiáng)度:如果將一張和食品保鮮膜一樣薄的石墨烯薄片覆蓋在一只杯子上,然后試圖用一支鉛筆戳穿它,那么需要一頭大象站在鉛筆上,才能戳穿只有保鮮膜厚度的石墨烯薄層?!疤针娞荨崩|線一旦科學(xué)家發(fā)現(xiàn)了一些只有100分之一頭發(fā)絲寬度的石墨烯薄片后,他們就開始使用原子尺寸的金屬和鉆石探針對(duì)它們進(jìn)行穿刺,從而測(cè)試它們的強(qiáng)度。但這項(xiàng)實(shí)驗(yàn)的結(jié)果表明, 若要將石墨烯用于納米電子器件, 必須注重其邊緣的工程控制, 以獲得