【摘要】學(xué)校代號(hào)10532學(xué)號(hào)G06009010分類號(hào)TM714密級(jí)普通碩士學(xué)位論文基于量子神經(jīng)網(wǎng)絡(luò)的短期電力負(fù)荷預(yù)測(cè)學(xué)位申請(qǐng)人姓名李
2025-06-27 05:43
【摘要】基于貝葉斯神經(jīng)網(wǎng)絡(luò)方法的短期負(fù)荷預(yù)測(cè)摘要:短期負(fù)荷預(yù)測(cè)對(duì)于有效的電力系統(tǒng)規(guī)劃和運(yùn)營(yíng)是非常重要的工具。我們?cè)诒疚奶岢鍪褂秘惾~斯方法來設(shè)計(jì)一個(gè)基于電力負(fù)荷預(yù)測(cè)模型的最優(yōu)神經(jīng)網(wǎng)絡(luò)。貝葉斯建模法比傳統(tǒng)的神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)法具有更顯著的優(yōu)勢(shì)。在其他方法中,我們是通過引用正則化系數(shù)的自動(dòng)調(diào)諧,選擇最重要的輸入變量,引出說明模型輸出的不確定性區(qū)間及對(duì)不同模型進(jìn)行比較的可能性來選取最優(yōu)模型的。我們提出的這
2025-06-29 05:21
【摘要】本科生畢業(yè)設(shè)計(jì)(論文)題目:姓名:學(xué)號(hào):
2025-07-07 09:08
【摘要】本科生畢業(yè)設(shè)計(jì)(論文)題目:姓名:學(xué)號(hào):學(xué)院:
2025-06-23 12:28
【摘要】四川理工學(xué)院畢業(yè)論文基于RBF神經(jīng)網(wǎng)絡(luò)的短期負(fù)荷預(yù)測(cè)研究學(xué)生:周路堯?qū)W號(hào):09021040324專業(yè):電氣工程及其自動(dòng)化班級(jí):指導(dǎo)教師:曾曉輝
2024-09-01 18:24
【摘要】四川理工學(xué)院本科畢業(yè)論文四川理工學(xué)院畢業(yè)論文基于RBF神經(jīng)網(wǎng)絡(luò)的短期負(fù)荷預(yù)測(cè)研究學(xué)生:周路堯?qū)W號(hào):09021040324專業(yè):電氣工程及其自動(dòng)化班級(jí):指導(dǎo)教師:曾曉輝四川理工學(xué)院自動(dòng)化與電子信息學(xué)院
2025-06-30 18:55
【摘要】摘要I本科畢業(yè)設(shè)計(jì)(論文)基于神經(jīng)網(wǎng)絡(luò)的電力系統(tǒng)負(fù)荷預(yù)測(cè)的研究牛艷霞燕山大學(xué)2021年6月本科畢業(yè)設(shè)計(jì)(論文)基于神經(jīng)網(wǎng)絡(luò)的電力系統(tǒng)負(fù)荷預(yù)測(cè)的研究
2024-12-10 01:14
【摘要】基于BP神經(jīng)網(wǎng)絡(luò)的日負(fù)荷預(yù)測(cè)1BP神經(jīng)網(wǎng)絡(luò)人工神經(jīng)網(wǎng)絡(luò)(ArtificialNeuralNetworks,即ANN)是一種采用物理可實(shí)現(xiàn)的系統(tǒng)來模仿人腦神經(jīng)細(xì)胞的結(jié)構(gòu)和功能的系統(tǒng)。它是在現(xiàn)代神經(jīng)科學(xué)研究成果的基礎(chǔ)上提出的,試圖通過模擬大腦神經(jīng)網(wǎng)絡(luò)處理、記憶信息的方式進(jìn)行信息處理。人工神經(jīng)網(wǎng)絡(luò)是近年來十分熱門的交叉學(xué)科,它涉及生物、電子、計(jì)算機(jī)、數(shù)學(xué)和物理學(xué)科,有著非常廣泛
2025-06-22 15:40
【摘要】基于小波神經(jīng)網(wǎng)絡(luò)的電力負(fù)荷預(yù)測(cè)模型設(shè)計(jì)畢業(yè)論文1緒論選題的目的和意義電力工業(yè)是國(guó)民經(jīng)濟(jì)的基礎(chǔ)產(chǎn)業(yè),在整個(gè)國(guó)民經(jīng)濟(jì)的發(fā)展起著舉足輕重的作用。多年的實(shí)踐經(jīng)驗(yàn)告訴我們,如果電力工業(yè)的發(fā)展速度能夠滿足國(guó)民經(jīng)濟(jì)建設(shè)的需要,就會(huì)促進(jìn)經(jīng)濟(jì)的高速發(fā)展;否則,就會(huì)產(chǎn)生嚴(yán)重的供需矛盾,阻礙國(guó)民經(jīng)濟(jì)的發(fā)展。隨著現(xiàn)代工業(yè)和農(nóng)業(yè)的不斷發(fā)展及人民生活水平
2025-06-30 20:29
【摘要】神經(jīng)網(wǎng)絡(luò)及其應(yīng)用5月20日第十四章基于神經(jīng)網(wǎng)絡(luò)的預(yù)測(cè)系統(tǒng)建模、辨識(shí)和預(yù)測(cè)?線性系統(tǒng)預(yù)測(cè)問題?時(shí)域:ARMA模型?頻域:傳遞函數(shù)矩陣?非線性系統(tǒng)預(yù)測(cè)問題?靜態(tài):多層前向網(wǎng)絡(luò)?動(dòng)態(tài):具有內(nèi)部反饋的動(dòng)態(tài)網(wǎng)絡(luò)基于神經(jīng)網(wǎng)絡(luò)的預(yù)測(cè)原理?正向建模?逆向建模電力系統(tǒng)負(fù)
2025-05-29 05:59
【摘要】基于BP神經(jīng)網(wǎng)絡(luò)的電力系統(tǒng)負(fù)荷預(yù)報(bào)報(bào)告主要內(nèi)容?電力系統(tǒng)負(fù)荷預(yù)報(bào)的問題描述?BP神經(jīng)網(wǎng)絡(luò)原理概述?仿真實(shí)驗(yàn)問題描述?近幾年,我國(guó)南方一直處于“電荒”的被動(dòng)情況,為了更好地利用電能,必須做好電力負(fù)荷的短期預(yù)報(bào)工作。負(fù)荷預(yù)報(bào)的誤差將導(dǎo)致運(yùn)行和生產(chǎn)費(fèi)用的劇增,因此,精確的預(yù)報(bào)就成了電力工作者和其他科技人員致力解決的問題
2025-01-09 02:24
【摘要】I/64基于局部神經(jīng)網(wǎng)絡(luò)的電力需求預(yù)測(cè)研究摘要電力需求預(yù)測(cè)是實(shí)現(xiàn)電力系統(tǒng)安全、經(jīng)濟(jì)運(yùn)行的基礎(chǔ),對(duì)一個(gè)電力系統(tǒng)而言,提高電網(wǎng)運(yùn)行的安全性和經(jīng)濟(jì)性,改善電能質(zhì)量,都依賴于準(zhǔn)確的電力需求預(yù)測(cè)。中長(zhǎng)期電力預(yù)測(cè)可以為新發(fā)電機(jī)組的安裝以及電網(wǎng)的規(guī)劃、增容和改建等提供決策支持,是電力規(guī)劃部門的重要工作之一。本文提出基于局部神經(jīng)網(wǎng)絡(luò)的預(yù)測(cè)模型進(jìn)行電力需求預(yù)測(cè)。首先,采用模式預(yù)處理
2025-06-30 20:43
【摘要】摘要洪峰流量的預(yù)測(cè)可以基本定型洪水的規(guī)模,可以提前制定合理的防洪預(yù)案,及時(shí)減少人員傷亡和財(cái)產(chǎn)損失,因而預(yù)報(bào)洪峰流量具有重要意義。河道水情預(yù)報(bào)十分復(fù)雜,由于受各種因素的影響表現(xiàn)為非線性動(dòng)力學(xué)過程,而且因素之間的變化及相互影響關(guān)系也難以確定。鑒于人工神經(jīng)網(wǎng)絡(luò)有很強(qiáng)的處理大規(guī)模非線性動(dòng)力學(xué)系統(tǒng)的能力,本文緊緊圍繞人工神經(jīng)網(wǎng)絡(luò)的數(shù)學(xué)領(lǐng)域的知識(shí),改進(jìn)了BP網(wǎng)絡(luò)洪水預(yù)報(bào)模型。具體工作如下:針對(duì)
2025-06-21 15:58
【摘要】基于神經(jīng)網(wǎng)絡(luò)的車輛制動(dòng)預(yù)測(cè)研究[摘要]本文對(duì)汽車制動(dòng)過程中,影響汽車制動(dòng)距離的主要因素:路面附著系數(shù)和初始速度等進(jìn)行分析,提出了用神經(jīng)網(wǎng)絡(luò)的方法對(duì)汽車制動(dòng)距離進(jìn)行預(yù)測(cè)分析并闡述了對(duì)汽車制動(dòng)距離預(yù)測(cè)的必要性和可行性。我們以干瀝青與混凝土路面狀況下汽車制動(dòng)距離的實(shí)驗(yàn)數(shù)據(jù)為基礎(chǔ),建立基于BP神經(jīng)網(wǎng)絡(luò)的預(yù)測(cè)模型,并利用MATLAB進(jìn)行數(shù)據(jù)擬合檢驗(yàn),結(jié)果表明我們的方法能有效地預(yù)測(cè)
2025-06-30 20:44
【摘要】基于模糊神經(jīng)網(wǎng)絡(luò)的煤層瓦斯含量預(yù)測(cè)研究陳闖模糊神經(jīng)網(wǎng)絡(luò)模型研究結(jié)果表明:模糊神經(jīng)網(wǎng)絡(luò)模型不僅能夠較好地解決模糊信息難于定量表達(dá)、學(xué)習(xí)樣本難于確定等問題,而且能夠較準(zhǔn)確地提取出煤層瓦斯含量與其各個(gè)影響因素之間的非線性關(guān)系。通過實(shí)例運(yùn)算驗(yàn)證,其預(yù)測(cè)精度較神經(jīng)網(wǎng)絡(luò)模型提高了4.84%~25.79%,應(yīng)用于煤層瓦
2025-01-07 13:47