【摘要】基于貝葉斯的判別理論及其算法實現(xiàn)計算機(jī)科學(xué)與技術(shù),2011,碩士【摘要】在全球信息化浪潮的推動下,數(shù)據(jù)挖掘技術(shù)的研究和應(yīng)用迅速發(fā)展。如何從海量的數(shù)據(jù)里“挖掘”或“發(fā)現(xiàn)”隱含的、有用的信息和知識,成為各類數(shù)據(jù)庫的應(yīng)用研究中越來越重要的課題。其中,對研究對象進(jìn)行分類的判別分析是數(shù)據(jù)挖掘的一類重要基礎(chǔ)理論。所謂判別分析,是指在分類情況明確的條件下,依據(jù)目標(biāo)對象具有的各類屬性的特征值判定其
2025-06-22 23:06
【摘要】畢設(shè)報告學(xué)院:自動化學(xué)院判別分析的數(shù)據(jù)挖掘研究本題目應(yīng)完成以下工作:理清逐步判別分析方法的數(shù)學(xué)原理,編寫出相應(yīng)的算法程序。成果形式為完成的畢業(yè)論文與模型試驗。【摘要】:在使用判別分析進(jìn)行數(shù)據(jù)處理時,對判別能產(chǎn)生影響的變量往往很多,如果不加選擇地一概采用來建立判別函數(shù),不僅
2025-07-01 12:54
【摘要】模式識別徐蔚然北京郵電大學(xué)信息工程學(xué)院本節(jié)和前節(jié)的關(guān)系?上節(jié):基本概念?階段性的總結(jié)?本節(jié):概念具體化?結(jié)合一種比較典型的概率分布來進(jìn)一步基于最小錯誤貝葉斯決策分類器的種種情況本節(jié)重點?什么叫正態(tài)分布?高斯分布的表達(dá)式?如
2025-05-03 12:09
【摘要】樸素貝葉斯分類、摘要??????貝葉斯分類是一類分類算法的總稱,這類算法均以貝葉斯定理為基礎(chǔ),故統(tǒng)稱為貝葉斯分類。本文作為分類算法的第一篇,將首先介紹分類問題,對分類問題進(jìn)行一個正式的定義。然后,介紹貝葉斯分類算法的基礎(chǔ)——貝葉斯定理。最后,通過實例討論貝葉斯分類中最簡單的一種:樸素貝葉斯分類。、分類問題綜述
2025-04-11 23:55
【摘要】第二章基于貝葉斯決策理論的分類器ClassifiersBasedonBayesDecisionTheory§1引言§2Bayes決策理論最小錯誤率的貝葉斯決策最小風(fēng)險的貝葉斯決策§3Bayes分類器和判別函數(shù)§4正態(tài)分布的
2025-03-12 14:15
2025-03-12 14:22
【摘要】ed6e74e0641c5cc279a1942ed79030e9商務(wù)數(shù)據(jù)分析電子商務(wù)系列上海財經(jīng)大學(xué)經(jīng)濟(jì)信息管理系IS/SHUFEPage1of70第三十八課判別分析
2024-08-23 17:33
【摘要】貝葉斯分析BayeseanAnalysis§一、決策問題的表格表示——損失矩陣對無觀察(No-data)問題a=δ可用表格(損失矩陣)替代決策樹來描述決策問題的后果(損失):……π()…π()…π()
2025-07-03 04:30
【摘要】第二章貝葉斯決策理論,,,2.1引言2.2最小錯誤率貝葉斯決策2.3最小風(fēng)險貝葉斯決策2.4正態(tài)分布下的貝葉斯決策,2.1引言,統(tǒng)計決策理論是根據(jù)每一類總體的概率分布決定未知類別的樣本屬于哪一類貝葉斯...
2024-10-20 20:29
【摘要】模式識別——貝葉斯決策理論馬勤勇一最簡單的貝葉斯分類算法?還使用前面的例子:鱸魚(seabass)和鮭魚(salmon)。?使用一個特征亮度對這兩種魚進(jìn)行表示。?新來了一條魚特征是x(亮度),怎么根據(jù)特征x確定它到底是鱸魚ω1還是鮭魚ω2??已知數(shù)據(jù):鱸魚類標(biāo)號ω1,鮭魚類標(biāo)號ω2。鱸魚
2025-03-07 16:28
2024-10-25 00:52
【摘要】第二章貝葉斯決策理論?引言?最小錯誤率貝葉斯決策???統(tǒng)計決策理論是根據(jù)每一類總體的概率分布決定未知類別的樣本屬于哪一類?貝葉斯決策是統(tǒng)計決策理論的基本方法,它的基本假定是分類決策是在概率空間中進(jìn)行的,并且以下概率分布是已知的–每一類的概率分布–類條件概率密度
2025-01-16 02:31
【摘要】課前思考?機(jī)器自動識別分類,能不能避免錯分類??怎樣才能減少錯誤??不同錯誤造成的損失一樣嗎??先驗概率,后驗概率,概率密度函數(shù)??什么是貝葉斯公式??正態(tài)分布?期望值、方差??正態(tài)分布為什么是最重要的分布之一?學(xué)習(xí)指南?理解本章的關(guān)鍵?要正確理解先驗概率,類概率密度函數(shù),后驗
2025-02-08 05:59
【摘要】17/18第四章貝葉斯分析BayeseanAnalysis§一、決策問題的表格表示——損失矩陣對無觀察(No-data)問題a=δ可用表格(損失矩陣)替代決策樹來描述決策問題的后果(損失):……π()…π()…
2025-06-27 20:01
【摘要】北京第七章貝葉斯分類器機(jī)器學(xué)習(xí)圖形繪制圖片處理圖表設(shè)計典型案例*貝葉斯決策論1346Contents目錄*25極大似然估計樸素貝葉斯分類器半樸素貝葉斯分類器貝葉斯網(wǎng)EM算法機(jī)器學(xué)習(xí)
2024-08-27 00:11