【正文】
101. The Six Sigma Black Belt will be aware of the limits of the Six Sigma approach. 6西格瑪黑帶應(yīng)知道6西格瑪方法的局限性。 99. Given distributions of strength and stress, the Six Sigma Black Belt will be able to pute the probability of failure. 給出強(qiáng)度和應(yīng)力的分布,6西格瑪黑帶應(yīng)能計(jì)算出故障的概率。 97. The Six Sigma Black Belt will demonstrate the ability to read an FMEA analysis. 6西格瑪黑帶應(yīng)能示范其理解 FMEA分析的能力。 95. Given the failure rates for given subsystems, the Six Sigma Black Belt will be able to use reliability apportionment to set mtbf goals. 給出給定子系統(tǒng)的故障率,6西格瑪黑帶應(yīng)能利用可靠性分配原則設(shè)定平均無故障時(shí)間目標(biāo)。93. The Six Sigma Black Belt will be able to perform chisquare analysis of contingency tables. 6西格瑪黑帶應(yīng)能完成關(guān)聯(lián)表的卡方分析。 91. The Six Sigma Black Belt will be able to identify patterns in residuals from an improper regression model and to apply the correct remedy.6西格瑪黑帶應(yīng)能夠識別不恰當(dāng)?shù)幕貧w模型的殘差圖形,并能應(yīng)用正確的補(bǔ)救方法。 89. The Six Sigma Black Belt will be able to use a quadratic loss function to pute the cost of a given process. 6西格瑪黑帶應(yīng)能使用二次品質(zhì)損失函數(shù)來計(jì)算給定過程的成本。 87. Given a response surface equation in quadratic form, the Six Sigma Black Belt will be able to pute the stationary point. 給出一個(gè)二次方程式形式的響應(yīng)曲面公式,6西格瑪黑帶應(yīng)能計(jì)算出駐點(diǎn)。 85. The Six Sigma Black Belt will be able to evaluate the diagnostics for an experiment. 6西格瑪黑帶應(yīng)能評價(jià)針對實(shí)驗(yàn)的診斷。 83. The Six Sigma Black Belt will understand fold over designs and be able to identify the fold over design that will clear a given alias. 6西格瑪黑帶應(yīng)了解設(shè)計(jì)上的交疊并能夠識別出明顯給出假信號的交疊設(shè)計(jì)。 81. The Six Sigma Black Belt will understand the idea of confounding and be able to identify which two factor interactions are confounded with the significant main effects. 6西格瑪黑帶應(yīng)了解混淆的概念,并能識別出哪兩個(gè)因子的交互作用與重要影響相混淆。 79. Given data for such an experiment, the Six Sigma Black Belt can identify which main effects are significant and state the effect of these factors. 給出一組實(shí)驗(yàn)數(shù)據(jù),6西格瑪黑帶應(yīng)能識別哪種要因是主要因子并能說出這些因子的影響。 77. Given an appropriate experimental result, the Six Sigma Black Belt should be able to pute the direction of steepest ascent. 給定一份合適的實(shí)驗(yàn)結(jié)果,6西格瑪黑帶應(yīng)能計(jì)算出其最速上升的方向。 75. Given a set of data, the Six Sigma Black Belt should be able to perform a Latin Square analysis and interpret the results. 給定一組數(shù)據(jù),6西格瑪黑帶應(yīng)能夠進(jìn)行拉丁方分析并解釋其結(jié)果。 72. Given a clean experimental plan, the Six Sigma Black Belt should be able to find the correct number of replicates to obtain a desired power. 給定一個(gè)空白的實(shí)驗(yàn)方案,6西格瑪黑帶應(yīng)能找出為取得期望結(jié)果所需復(fù)制的正確數(shù)字 73. The Six Sigma Black Belt should know the difference between the various types of experimental models (fixedeffects, randomeffects, mixed 6西格瑪黑帶應(yīng)了解不同實(shí)驗(yàn)?zāi)P椭g的差異(固定后果、隨機(jī)后果、混合后果)。 70. Given the results of a replicated 22 fullfactorial experiment, the Six Sigma Black Belt should be able to plete the entire ANOVA table. 給出22全析因試驗(yàn)的結(jié)果,6西格瑪黑帶應(yīng)能完成整個(gè)方差分析表。包括計(jì)算和解釋過程能力指數(shù)、估計(jì)故障百分率、控制限計(jì)算等。 67. The Six Sigma Black Belt should be able to correctly apply EWMA charts to a process with serial correlation in the data. 6西格瑪黑帶應(yīng)能正確的將指數(shù)加權(quán)移動(dòng)平均圖應(yīng)用到一個(gè)在數(shù)據(jù)上連續(xù)相關(guān)的過程。 64. The Six Sigma Black Belt should be able to identify which cause on a list of possible causes will most likely explain a nonrandom pattern in the regression residuals.6西格瑪黑帶應(yīng)能識別在各種可能原因的列表中,哪一個(gè)原因最合適解釋在回歸殘差中出現(xiàn)的非隨機(jī)分布。 62. The above should be demonstrated for data representing all of the most mon control charts. 6西格瑪黑帶應(yīng)能示范所有最常用控制圖的數(shù)據(jù)表現(xiàn)形式。當(dāng)提供了數(shù)據(jù)以及和數(shù)據(jù)有關(guān)的足夠信息時(shí),6西格瑪黑帶應(yīng)能選擇并正確地使用這種技術(shù)。 59. Given a set of data the Six Sigma Black Belt should be able to correctly identify which distribution should be used to perform a given analysis, and to use the distribution to perform the analysis. 給定一組數(shù)據(jù),6西格瑪黑帶應(yīng)能正確地識別應(yīng)用哪種分布來進(jìn)行分析,并且能利用其進(jìn)行分析。 58. The Six Sigma Black Belt should be familiar with the monly used probability distributions, including: hypergeometric, binomial, Poisson, normal, exponentia