【正文】
如果這樣一個(gè)怪異的家伙出現(xiàn)在街道上,一定會(huì)成為最大焦點(diǎn)。這款單人駕駛的代步工具名為“機(jī)械蜘蛛”,有8條腿,利用液壓行進(jìn)。 ? 123 ? 一年一度的“火人節(jié)”從來(lái)就不缺少富有藝術(shù)氣息和奇形怪異的汽車。錯(cuò)列的窗戶色彩鮮艷,能夠起到遮陽(yáng)和通風(fēng)的作用。更令人感到欣喜的是,與此前采取的方式相比,仿蝴蝶翅膀太陽(yáng)能收集器的成本效益更高。研究人員利用從蝴蝶翅膀上獲得的靈感,提高染料敏化太陽(yáng)能電池收集陽(yáng)光的能力。 Mirasol顯示屏利用環(huán)境中的自然光線而不是人造照明。 Mirasol顯示屏能夠產(chǎn)生類似的效果,它采用兩個(gè)玻璃面板和微型鏡子,能夠?qū)㈩伾瓷涞狡聊簧?。蝴蝶翅膀上的微小鱗片能夠反射光線,上面覆蓋著透明的膜。很顯然,這是一種具有可持續(xù)性和成本效益的方式。蟻堆底部的孔負(fù)責(zé)吸入空氣,頂部的孔則負(fù)責(zé)將空氣排出。 119 ? 如何讓津巴布韋的中高層建筑在不使用空調(diào)或者不用支付大筆電費(fèi)情況下保持涼爽呢?答案是模仿自冷卻的白蟻堆。雖然聽(tīng)起來(lái)沒(méi)什么大不了的,但對(duì)于研制光學(xué)計(jì)算機(jī)芯片的科學(xué)家來(lái)說(shuō),這卻是解決一個(gè)困擾了他們多年的問(wèn)題的關(guān)鍵。除了農(nóng)場(chǎng)外,這座建筑的內(nèi)部還建造了住宅和辦公室。這座供養(yǎng)動(dòng)植物的農(nóng)場(chǎng)能夠利用充足的陽(yáng)光和高空的空氣流動(dòng)。 117 ? 令人吃驚的垂直概念農(nóng)場(chǎng)是文森特 水劇場(chǎng)是專為金絲雀群島的拉斯帕爾馬斯開(kāi)發(fā)區(qū)設(shè)計(jì)的,它同樣從甲蟲身上獲取靈感。 116 ? 這一設(shè)計(jì)與甲蟲靈感水壺類似,但個(gè)頭卻是它的 1000倍。這款水壺采用不銹鋼圓頂造型,早晨時(shí)的溫度低于空氣,所形成的露水會(huì)滑落至一個(gè)收集道。他就是帕克 115 世界上一些嚴(yán)重缺水的地區(qū),只有富有革新性的發(fā)明創(chuàng)造才能真正確保飲用水的潔凈與安全。他們知道沒(méi)有什么能夠比這種設(shè)計(jì)更完美的了。按照政府提出的要求,輪胎需要具備較高的承重能力,可抵御臨時(shí)爆炸裝置襲擊并且能夠在遇襲后仍以每小時(shí) 50英里 (約合每小時(shí) 80公里 )的速度行駛。以下盤點(diǎn)的是十大仿生設(shè)計(jì),設(shè)計(jì)靈感來(lái)自蝴蝶、甲蟲、蜘蛛等昆蟲和蜘蛛綱動(dòng)物,它們讓我們研制的設(shè)備進(jìn)一步接近自然的完美。zɑ:] to be true, just check out this video on YouTube or view it below. 98 ? This bionic bug is the latest creation of a governmentfunded research project whose goal is to invent a new kind of military surveillance by fusing living insects with innovative electronics. The Defense Advanced Research Projects Agency (DARPA) has already invested $12 million since 2022 in the scifi venture, hoping someday to deploy insectmachine hybrids as inconspicuous army scouts. A diverse group of scientists from across the nation is working to help make DARPA’s vision of remote controlled insect spies a reality. Although any military application is still a long way off, biologists and engineers are already finding the research useful. 99 ? In a new study, electrical engineer Hirotaka Sato and his Berkeley colleagues embedded tiny electrodes in beetles’ brains and muscles, allowing the researchers to remotely start and stop flight, make the insects turn right or left, and even trigger changes in elevation. ? The Berkeley research demonstrates ―the first wireless control of any insect in free flight,‖ said John VandenBrooks, an Arizona State University insect biologist and coauthor of the study, which was published this past October in the journal Frontiers in Integrative Neuroscience. 100 ? According to the study, remotely controlled flying insects could ―serve as couriers [?k?ri?] to locations not easily accessible to humans,‖ places where soldiers can’t stroll about unnoticed. As stated on its web site, DARPA hopes to eventually use insect cybs[?sa??b?rɡ] to carry ―sensors, such as a microphone or a gas sensor, to relay back information gathered from the target destination.‖ ? The Berkeley team worked with green June beetles and giant flower beetles, which can grow to the size of a human palm. ―Beetles are really ubiquitous and really strong fliers, and they can carry a large payload,‖ said VandenBrooks, explaining how these bugs can fly even while toting the hefty electronic backpacks that process and power the electrodes wired to their bodies. 101 ? After implanting radioequipped electrodes into the adult beetles’ brains and wing muscles, the researchers used a laptop to wirelessly activate the implants, which delivered pulses of electricity. Exciting the beetles’ brains allowed the team to start or stop flight on mand. ? Exactly why this worked so well remains unclear, since the electrodes affected a sizeable and unspecified brain region. “We must have been stimulating some part of the motor area,” VandenBrooks suggested. To change the direction of flight, the researchers excited either the left or the right wing muscles. 102 ? Before the Berkeley study, most advances in insect cyb research happened at Cornell University’s Laboratory for Intelligent Machine Systems, where some resea