【正文】
that could also be represented in third party cell design is the utilization of these functional blocks to achieve very high gate density and good electrical performance. Standard cell design fits between Gate Array and Full Custom design in terms of both its NRE (NonRecurring Engineering) and recurring ponent cost.By the late 1980s, logic synthesis tools, such as Design Compiler, became available. Such tools could pile HDL descriptions into a gatelevel netlist. This enabled a style of design called standardcell design. Standardcell Integrated Circuits (ICs) are designed in the following conceptual stages, although these stages overlap significantly in practice.These steps, implemented with a level of skill mon in the industry, almost always produce a final device that correctly implements the original design, unless flaws are later introduced by the physical fabrication process.A team of design engineers starts with a nonformal understanding of the required functions for a new ASIC, usually derived from requirements analysis.*The design team constructs a description of an ASIC to achieve these goals using an HDL. This process is analogous to writing a puter program in a highlevel language. This is usually called the RTL (register transfer。附錄:英文資料及譯文1. 英文資料 The Integrated Circuit Digital logic and electronic circuits derive their functionality from electronic switches called transistor. Roughly speaking, the transistor can be likened to an electronically controlled valve whereby energy applied to one connection of the valve enables energy to flow between two other bining multiple transistors, digital logic building blocks such as AND gates and flipflops are formed. Transistors, in turn, are made from semiconductors. Consult a periodic table of elements in a college chemistry textbook, and you will locate semiconductors as a group of elements separating the metals and are called semiconductors because of their ability to behave as both metals and nonmetals. A semiconductor can be made to conduct electricity like a metal or to insulate as a nonmetal does. These differing electrical properties can be accurately controlled by mixing the semiconductor with small amounts of other elements. This mixing is called doping. A semiconductor can be doped to contain more electrons (Ntype) or fewer electrons (Ptype). Examples of monly used semiconductors are silicon and germanium. Phosphorous and boron are two elements that are used to dope Ntype and Ptype silicon, respectively. A transistor is constructed by creating a sandwich of differently doped semiconductor layers. The two most mon types of transistors, the bipolarjunction transistor (BJT) and the fieldeffect transistor (FET) are schematically illustrated in Figure figure shows both the silicon structures of these elements and their graphical symbolic representation as would be seen in a circuit diagram. The BJT shown is an NPN transistor, because it is posed of a sandwich of NPN doped silicon. When a small current is injected into the base terminal, a larger current is enabled to flow from the collector to the FET shown is an Nchannel FET, which is posed of two Ntype regions separated by a Ptype substrate. When a voltage is applied to the insulated gate terminal, a current is enabled to flow from the drain to the source. It is called Nchannel, because the gate voltage induces an Nchannel within the substrate, enabling current to flow between the Nregions. Another basic semiconductor structure is a diode, which is formed simply by a junction of Ntype and Ptype silicon. Diodes act like oneway valves by conducting current only from P to N. Special diodes can be created that emit light when a voltage is applied. Appropriately enough, these ponents are called light emitting diodes, or LEDs. These small lights are manufactured by the millions and are found in diverse applications from telephones to traffic lights. The resulting small chip of semiconductor material on which a transistor or diode is fabricated can be encased in a small plastic package for protection against damage and contamination from the out173。設(shè)計(jì)很多關(guān)鍵的地方我都是靠和同學(xué)的請(qǐng)教和討論才能順利完成,因此,同學(xué)的幫助也是我完成畢業(yè)設(shè)計(jì)的一個(gè)重要支撐。母校對(duì)我的栽培不僅讓我學(xué)會(huì)了科學(xué)知識(shí),更重要的是幫助我學(xué)會(huì)了如何去學(xué)習(xí),如何去把學(xué)到的知識(shí)應(yīng)用到實(shí)際的生活中,這對(duì)我畢業(yè)后的生活和工作是一筆巨大的財(cái)富。如果沒(méi)有老師幫助我解決在設(shè)計(jì)過(guò)程中困惑,我也很難順利完成這次畢業(yè)設(shè)計(jì)。在串級(jí)液位控制仿真過(guò)程中同時(shí)可整定PID參數(shù),通過(guò)不斷調(diào)節(jié)PID參數(shù),得到滿意的響應(yīng)曲線,使得其響應(yīng)速度快,超調(diào)量小,穩(wěn)態(tài)誤差小。水箱數(shù)學(xué)模型的建立是設(shè)計(jì)的開(kāi)始和關(guān)鍵,通過(guò)采集的數(shù)據(jù)在MATLAB上通過(guò)數(shù)據(jù)擬合得到各水箱階躍曲線,然后通過(guò)曲線可得到各水箱的一階傳遞函數(shù)中的參數(shù)K和T,進(jìn)而可得到三容水箱的傳遞函數(shù)。本次畢業(yè)設(shè)計(jì),結(jié)合所學(xué)的知識(shí)以及參考的資料,著重研究了三容水箱串級(jí)控制建模方法,串級(jí)控制系統(tǒng)的設(shè)計(jì)和MATLAB仿真,最終實(shí)現(xiàn)了對(duì)水箱液位的控制。6結(jié)論 液位是工業(yè)生產(chǎn)過(guò)程中重要的被控量之一,因而液位控制的研究具有很大的現(xiàn)實(shí)意義。3)在儀表控制系統(tǒng)中,一般是一個(gè)控制器控制一個(gè)回路,而在計(jì)算機(jī)控制系統(tǒng)中,由于計(jì)算機(jī)具有高速運(yùn)算的能力,一個(gè)控制器(控制計(jì)算機(jī))經(jīng)常采用分時(shí)控制的方式同時(shí)控制多個(gè)回路。2)儀表控制系統(tǒng),控制規(guī)律由硬件實(shí)現(xiàn),要修改控制規(guī)律,必須要改變硬件結(jié)構(gòu),如AI智能調(diào)節(jié)儀。所以說(shuō),控制器是過(guò)程控制系統(tǒng)的關(guān)鍵,控制規(guī)律的確定和控制器參數(shù)的整定是系統(tǒng)設(shè)計(jì)中最重要的環(huán)節(jié)。D=0調(diào)節(jié)器1的設(shè)定值為7cm,突加階躍后設(shè)定值到8cm,此時(shí)超調(diào)量為25%,調(diào)整時(shí)間為8分鐘(2%誤差帶),穩(wěn)態(tài)誤差0。D=0調(diào)節(jié)器3的參數(shù):P=20。D=25調(diào)節(jié)器2的參數(shù):P=30。 遠(yuǎn)程計(jì)算機(jī)系統(tǒng)突加階躍過(guò)渡過(guò)程曲線PID參數(shù):調(diào)節(jié)器1的參數(shù):P=70。提供了WWW瀏覽功能,能夠方便地實(shí)現(xiàn)生產(chǎn)現(xiàn)場(chǎng)控制與企業(yè)管理的集成。強(qiáng)大的網(wǎng)絡(luò)功能,支持TCP/IP、Modem、485/422/232,以及各種無(wú)線網(wǎng)絡(luò)和無(wú)線電臺(tái)等多種網(wǎng)絡(luò)體系結(jié)構(gòu)。完善的安全機(jī)制,允許用戶自由設(shè)定菜單、按鈕及退出系統(tǒng)的操作權(quán)限。強(qiáng)大的數(shù)據(jù)處理功能,能夠?qū)I(yè)現(xiàn)場(chǎng)產(chǎn)生的數(shù)據(jù)以各種方式進(jìn)行統(tǒng)計(jì)處理,使您能夠在第一時(shí)間獲得有關(guān)現(xiàn)場(chǎng)情況的第一手?jǐn)?shù)據(jù)。支持目前絕大多數(shù)硬件設(shè)備,同時(shí)可以方便地定制各種設(shè)備驅(qū)動(dòng);此外,獨(dú)特的組態(tài)環(huán)境調(diào)試功能與靈活的設(shè)備操作命令相結(jié)合,使硬件設(shè)備與軟件系統(tǒng)間的配合天衣無(wú)縫。龐大的標(biāo)準(zhǔn)圖形庫(kù)、完備的繪圖工具以及豐富的多媒體支持,使您能夠快速地開(kāi)發(fā)出集圖像、聲音、動(dòng)畫(huà)等于一體的漂亮、生動(dòng)的工程畫(huà)面。MCGS具有操作簡(jiǎn)便、可視性好、可維護(hù)性強(qiáng)、高性能、高可靠性等突出特點(diǎn),已成功應(yīng)用于石油化工、鋼鐵行業(yè)、電力系統(tǒng)、水處理、環(huán)境監(jiān)測(cè)、機(jī)械制造、交通運(yùn)輸、能源原材料、農(nóng)業(yè)自動(dòng)化、航空航天等領(lǐng)域,經(jīng)過(guò)各種現(xiàn)場(chǎng)的長(zhǎng)期實(shí)際運(yùn)行,系統(tǒng)穩(wěn)定可靠。MCGS為用戶提供了解決實(shí)際工程問(wèn)題的完整方案和開(kāi)發(fā)平臺(tái),能夠完成現(xiàn)場(chǎng)數(shù)據(jù)采集、實(shí)時(shí)和歷史數(shù)據(jù)處理、報(bào)警和安全機(jī)制、流程控制、動(dòng)畫(huà)顯示、趨勢(shì)曲線和報(bào)表輸出以及企業(yè)監(jiān)控網(wǎng)絡(luò)等功能。在這次設(shè)計(jì)中所使用的組態(tài)軟件是北京昆侖通態(tài)出品的MCGS組態(tài)軟件,這是一款優(yōu)秀的國(guó)產(chǎn)全中文工控組態(tài)軟件。而在遠(yuǎn)程數(shù)據(jù)采集系統(tǒng)中。該上位機(jī)控制系統(tǒng)實(shí)際上屬于計(jì)算機(jī)DDC直接數(shù)字控制系統(tǒng),只不過(guò)是將模擬量輸入AI模塊和模擬量輸出AO模塊,開(kāi)關(guān)量輸入/輸出DI,DO模塊置于計(jì)算機(jī)之外,計(jì)算機(jī)由RS232/485通訊轉(zhuǎn)換裝置同ICP7000系列模塊(自帶RS485通訊接口)通訊。D=0突加階躍信號(hào)后超調(diào)15%,調(diào)整時(shí)間6分鐘(2%誤差帶),穩(wěn)態(tài)誤差0。D=0調(diào)節(jié)器3的參數(shù):P=10。D=20調(diào)節(jié)器2的參數(shù):P=20。 儀表控制系統(tǒng)突加階躍信號(hào)過(guò)渡過(guò)程曲線穩(wěn)態(tài)值為5cm,階躍量為1cm.調(diào)節(jié)器1的參數(shù):P=70。(4)采用先進(jìn)的模塊化結(jié)構(gòu),提供豐富的輸出規(guī)格,能滿足各種應(yīng)用場(chǎng)合的需要。(2)輸入采用數(shù)字校正系統(tǒng),內(nèi)置常用熱電偶和熱電阻非線形校正表格,測(cè)量精確穩(wěn)定。主要技術(shù)指標(biāo):量程:0500M準(zhǔn)確度:%FS %FS %FS輸出信號(hào):兩線