【正文】
the beam stopped at the end of the weld site for 10 s after each scan. To minimize thermal damage to the skin beyond the weld area, highre?ecting metal plates placed on each end of the incision blocked the beam. Experiments were performed at constant irradiance (127) paring laser spot diameters of 1, 2, 4, and 6 mm [fullwidth at fullmaximum(FWHM)], with laser output powers of 1, 4, 16, and 36 W, respectively. The beam pro?le, as measured by scanning a 200 mdiameter pin hole across the beam, was approximately Gaussian for all spot diameters. The power delivered to the tissue was measured before each weld with a power meter (Molectron PowerMax 5100, Portland, OR). It shows the experimental con?guration used for dyeassisted laser skin welding and summarizes the laser parameters for this study.After welding, the anesthetized guinea pig was euthanized with an intracardiac overdose of sodium pentobarbitol (Nembutal, Abbott Laboratories, North Chicago, IL). The dorsal skin, including epidermis and dermis, was excised with a scalpel and then sectioned. Samples were processed using standard histological techniques, including storage in 10% formalin, processing with graded alcohols and xylenes, para?n embedding, sectioning, and hemotoxylin and eosin staining. A minimum of seven samples was processed for each laser spot diameter and beam pro?le. The 6mmdiameter spot study was discontinued after grossly obvious burns developed at the wound site.Thermal denaturation measurements were made using a transmission light microscope (Nikon, Japan) ?t with crossed linear polarizers (Prinz, Japan). Thermal denaturation was measured laterally from the center of the weld site at three different depths: the papillary dermis, middermis, and base of the dermis. The depth to which one observed denaturation was recorded and divided by the skin thickness to obtain the fraction of a fullthickness weld that was achieved. Measurements were made consistently to the point at which plete thermal denaturation of the tissue was observed.Statistical analyzes were conducted on the histological data. ANOVA was used to determine statistical signi?cance of thermal denaturation measurements between laser spot size groups.B. Monte Carlo SimulationMonte Carlo simulations were run to investigate the effect of various spot sizes (1–6mm diameters) and beam pro?les (Gaussian versus ?attop and single versus dual beam) on the distribution of absorbed radiation. All simulations were run using code available over the public domain . Several changes were made in the Monte Carlo code to adapt it for use with the geometry of this application. First, because the vertical ink layer in the tissue disrupted the cylindrical symmetry assumed in the Original program, the data were stored in Cartesian rather than cylindrical coordinates and a convolution program was not used to generate the laser beam pro?le. The beam pro?le was, instead, created using a random number generator 。參考文獻(xiàn)1 孫文. 我國激光產(chǎn)業(yè)的發(fā)展現(xiàn)狀及對策. 中國地質(zhì)大學(xué)學(xué)報, 2002, 2(2): 1671692 楊向陽, 周望龍, 鄔敏賢. 光盤讀寫斑點(diǎn)二維強(qiáng)度分布測量. 應(yīng)用激光, 1986, 6(4): 1631653 周炳琨, 鬧以智, 陳家驊. 激光原理. 國防工業(yè)出版社, 1984: 1041124 竺子民, 馮輝, 阮玉等. 基于泰伯效應(yīng)的高斯光束尺寸測量. 光學(xué)學(xué)報, 1996, 16(7): 9829875 樊心民, 鄭義, 王冠軍. 90 /10刀口法測量高斯激光光束束腰的兩種計算方法. 應(yīng)用激光, 2008, 28(2): 1391416 劉曉兵, 雷升印, 吳學(xué)軍. 刀口特性對光斑測量的影響. 應(yīng)用激光, 1994, 14(1): 27307 趙長明. 激光光束質(zhì)量參數(shù)測量的實(shí)驗(yàn)研究. 激光技術(shù), 2000, 24(6): 3413448 李文成, 谷晉騏, 王涌萍. 激光光斑及束腰光斑尺寸的測量研究. 應(yīng)用光學(xué), 2002, 23(3): 30339 孫偉, 高春清, 魏光輝. 精確CCD光束參數(shù)測量與評價系統(tǒng)的設(shè)計. 北京理工大學(xué)學(xué)報, 2000, 20(4): 47147410 伍長征, 王兆永等, 激光物理學(xué). 上海復(fù)旦大學(xué)出版社, 1989: 14415611 張志涌. 精通MATLAB. . 北京航空航天大學(xué)出版社. 2003: 14715012 方海濤, 黃德雙. 激光光斑能量分布的三維偽彩色可視化方法. 光學(xué)工程. 2004, 31(10): 616413 羅軍輝, 馮平. . 機(jī)械工業(yè)出版社. 2005: 15115214 王慶有, 孫學(xué)珠. CCD 應(yīng)用技術(shù). 天津大學(xué)出版社, 1993: 17819515 M. Nathaniel Fried, C. Vincent Hung, and Joseph T. Walsh, Jr. Laser Tissue Welding: Laser SpotSize and Beam Pro?le Studies. QUANTUM ELECTRONICS, 1999: 1004101216 D. Diso, M. R. Perrone, M. L. Protopapa. Bean width measurements of asymmetric multimode laser beams. Optics amp。這些美好,將永雋我心。另外我還要感謝關(guān)心我的老師,曾給予我的對于人生和未來的那些重要的中肯的啟迪,他改變了我對于在藝術(shù)道路上和生活中那些消極的態(tài)度,使我有了一種前所未有的激情去為藝術(shù)獻(xiàn)身,去為教育事業(yè)貢獻(xiàn)力量。在這里,我要特別感謝一直給予我?guī)椭?、我敬愛的?dǎo)師高瑋老師,她無論從專業(yè)上還是從職業(yè)操守上都給了我無限的啟迪,在我的論文撰寫階段,曾給過我悉心的指導(dǎo)和耐心的評閱;在我找工作的過程中,在個人學(xué)習(xí)和生活方面,曾給過我許多關(guān)心和溫暖,教我不勝感激。我從很多同學(xué)身上學(xué)到了許多曾經(jīng)書本上沒學(xué)過的實(shí)踐知識,更從諸位老師身上學(xué)到了足以教我一生受用的寶貴學(xué)習(xí)經(jīng)驗(yàn)。致謝仿佛還是昨天,我懷著懵懂忐忑的心情來到了哈爾濱理工大學(xué),可是現(xiàn)在,我就要離開了。刀口掃描法則對高能量激光比較實(shí)用,裝置簡單。用Matlab及Origin成功的提取出CCD拍攝的光斑圖像的相對遷都數(shù)據(jù),算得激光光斑直徑,取得理想結(jié)果。用CCD采集激光光斑圖片,編寫Matlab程序,用該程序?qū)⒐獍邎D片三維可視化作圖,根據(jù)圖片,算得光斑直徑。本文對此做了如下工作:分析了刀口描法和CCD法的實(shí)驗(yàn)可行性與理論基礎(chǔ)。 39 結(jié)論激光光斑尺寸和激光束腰光斑尺寸是標(biāo)志激光器性能的重要參數(shù),也是激光器在應(yīng)用中的重要參量。千萬不要刪除行尾的分節(jié)符,此行不會被打印。對于CCD法,本章介紹了光斑圖片的采集,圖像的前期處理,Matlab軟件與Origin軟件對數(shù)據(jù)的提取及處理。對于刀口法,首先用90/10刀口法,進(jìn)行了理論計算,得出覺果然后用Origin作圖處理數(shù)據(jù),得到結(jié)果與理論結(jié)果比較。對于高功率激光,CCD存在飽和現(xiàn)象,實(shí)驗(yàn)時也要注意避免大功率激光對CCD造成損壞。由于采用了高速采樣系統(tǒng)和相對光強(qiáng)處理,以及無機(jī)械運(yùn)動測量,因此克服了傳統(tǒng)測量中,由于光束漂移,能量起伏以及機(jī)械運(yùn)動所帶來的測量誤差。因此將r從像素轉(zhuǎn)化為尺寸r=。圖311 高斯擬合后圖像由圖311,用Origin軟件找到相對強(qiáng)度強(qiáng)最大值的的點(diǎn),橫坐標(biāo)=,===以上數(shù)據(jù)的橫坐標(biāo)皆是用像素為單位。獲得了較為平滑的光強(qiáng)分布曲線后,就可以使用各種處理方法進(jìn)一步分析,以獲得激光光斑的相關(guān)參數(shù)。FFT平滑是普遍適用的方法,無論對于高斯分布還是非高斯分布。使用高斯平滑后,Origin軟件還會給出光斑直徑(按光強(qiáng)最大值的e2)和擬合誤差等參數(shù),極大的方便了我們分析高斯型的光強(qiáng)分布情況。由于三維圖像不方便計算,用Matlab找出取最高點(diǎn)能量,并分別做出x軸與y軸的二維切面圖,如圖38和39所示:圖38 光斑能量分布二維x軸切面圖圖39 光斑能量分布二維y軸切面圖將圖38數(shù)據(jù)提取出來,導(dǎo)入Origin軟件做出相對能量分布圖圖310 光斑相對強(qiáng)度分布圖經(jīng)過噪音濾除后,光強(qiáng)分布曲線還不夠平滑,有強(qiáng)度調(diào)制造成的影響,為此需要進(jìn)一步處理。Matlab圖片處理程序見附錄C,運(yùn)行流程圖如圖36所示:圖36 程序運(yùn)行流程圖 圖像處理結(jié)果用Matlab處理光斑圖片,將圖片三維可視化[13]。然后再使用自適應(yīng)濾波來消除白噪聲,圖像噪聲的平均值僅為4。圖35 CCD拍攝的激光光斑圖片 Matlab的圖片處理Matlab軟件是一種廣泛使用的工程軟件,利用Matlab中的圖像工具箱可以方便的進(jìn)行數(shù)字圖像處理[11]。同理在經(jīng)過激光的空間整形后我們用同樣的方法我們可以得到整形后的光斑圖像。并用Origin軟件進(jìn)行了數(shù)據(jù)的后期處理。 CCD法測激光光斑方法在進(jìn)行激光的空間整形的實(shí)驗(yàn)的時候,我們需要對整形前和整形后的激光光斑圖像進(jìn)行分析,得到相應(yīng)光斑的能量分布,評估整形的效果,這就需要我們建立一個有效的測量光斑能量密度的方法,但是人們一般是針對激光光斑的灰度圖像進(jìn)行研究,由于人眼對不同灰度級的分辨能力有限,因此難以充分利用激光光斑灰度圖像中包含的光斑能量分布信息,但是人的眼睛對色彩相當(dāng)敏感,能區(qū)分不同的亮度,色彩和飽和度等各種顏色。由以上工作可以看出:刀口法測量高斯光束光斑尺寸方法簡單,對實(shí)驗(yàn)器材要求低,易于操作,測量結(jié)果精度可達(dá)微米量級,能滿足一般實(shí)驗(yàn)室激光光束直徑測量的需要。束腰位置處,激光功率密度比較高,所以應(yīng)當(dāng)根據(jù)實(shí)際情況選擇合適的激光功率,不致將刀口燒壞。刀口必須垂直于高斯光束軸線方向,否則會影響測量的精度。 實(shí)驗(yàn)分析從上面的實(shí)驗(yàn)過程還可以看出:該實(shí)驗(yàn)方法過程簡單、實(shí)驗(yàn)結(jié)果精確度高。讓該激光經(jīng)過透鏡(焦距為15cm),測得一組數(shù)據(jù),做圖34:圖34 經(jīng)過透鏡后激光光