freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

畢業(yè)設(shè)計論文_水印技術(shù)在電子簽名中的防偽應用(參考版)

2024-09-02 12:59本頁面
  

【正文】 原圖像濾波后。 subplot(2,2,1),imshow(J)。 J2=imfilter(I2,H2)。 J=imfilter(I,H2)。)。 I3=imnoise(I,39。 pepper39。 I2=imnoise(I,39。gaussian39。)。 平滑處理實現(xiàn)代碼 %均值濾波法 %imfilter 的語法格式為: %B=imfilter(A,H) %其功能是,用 H 模板對圖像 A 進行均值濾波, %取平均值濾波模版為 %H2=1/25[1 1 1 1 1; 1 1 1 1 1; 1 1 1 1 1; 1 1 1 1 1; 1 1 1 1 1]; I=imread(39。二值化 39。 end, end, subplot(1,2,2)。 else image(i,j)=0。若該像素灰度值不為 0,則置為 255。 image=double(A)。原圖 39。 subplot(1,2,1)。39。在這里,向?qū)熤乱猿绺叩木匆夂椭孕牡母兄x。 南昌航空大學學士學位論文 34 參考文獻 [1]黃繼武 , 程衛(wèi)東 DCT域圖像水印 :嵌入對策和算法 . 電子學報 2020 . [2]伯曉晨 ,李濤 ,劉路等編著 .《 Matlab工 具箱應用摜 —— 信息工程篇》 電子工業(yè)出版社 2020年 4月第 1版 . [3]陶虹 周良柱 袁金榮 MATLAB與 Visual C++混合編程的實現(xiàn) 計算機工程與應用 2020,10,104. [4] 陳明奇,鈕心忻,楊義先 . “數(shù)字水印的研究進展和應用 .” 通信學報, Vol. 22, No. 5, May 2020, p. 7179. [5] 黃達人,劉九芬.黃繼武 .小波變換域圖象水印嵌入對策和算法 [J].軟件學報,2020. 13(7): 290— 295. [6] 許永峰 ,張書玲 ,基于小 波變換的圖象融合隱藏算法 ,西北大學學報(自然科學版) ,2020,34(4):386388. [7] 魏為民 . 基于彩色靜止數(shù)字圖象的信息隱藏技術(shù)研究,計算機應用與軟件, p50, [8]飛思科技產(chǎn)品研發(fā)中心 .小波分析理論與 MATLAB7實現(xiàn) .北京 :電子工業(yè)出版社 .. [9]孫圣和,陸哲明,牛夏牧 .數(shù)字水印技術(shù)與應用 .北京 :科學出版社, 2020,3640. [10]王炳錫,陳琦,鄧峰森 .數(shù)字水印技 .西安 :西安電子科技大學出版社, 2020,95104. [11]劉九芬,黃 達人,胡軍全 .數(shù)字水印中的雙正交小波基 .中山大學學報, (4):15. [12]何東健,數(shù)字圖像處理,西安電子科技大學出版社, 2020. [13]求是科技 蘇彥華, Visual C++數(shù)字圖像識別技術(shù)典型案例, 2020. [14]張慧明,圖像處理算法的快速驗證平臺 [D].西安電子科技大學, 2020. [15]曾瑩,陳曉柱, VC++下的圖像處理算法 [J].電腦與電信, 2020. [16]王廣新,基于 FPGA的聲納圖像處理卡的設(shè)計與實現(xiàn) [D].哈爾濱工程大學, 2020. [17]譚林秋,基于 VC++的數(shù)字圖像處理系統(tǒng)的開發(fā)及算法研究 [J].西安理工大學, 2020. [18]聶絮飛,基于 VC++的圖像數(shù)據(jù)采集與界面化顯示研究 [J]。從實驗結(jié)果上看,該 算法能夠滿足視覺上不可見性的要求,而且可以很好的保證加入水印后的圖像質(zhì)量,提取出的水印圖像清晰,視覺上看來與原始水印圖像幾乎一致,可以達到很好的水印效果。 Matlab實現(xiàn)程序見附 錄 C。 4. 根據(jù)嵌入時設(shè)置的密鑰 k,并根據(jù)水印圖像的尺寸求得其置亂周期 T,對 W39。(i,j)是提取出的水印小波系數(shù) 。(i ,j)X (i ,j))/a (4 .4) 其中 ,X 39。 南昌航空大學學士學位論文 32 2. 參照下式提取出嵌入的水印小波系數(shù) : W39。 (HHn , i,j)和x39。(LHn ,i,i)和 x(LHn ,i,j)、垂直分量小波系 數(shù) x39。 和原始圖像 X都進行三級小波分解,得到低頻分量的小波系數(shù)X39。 。本文經(jīng)過反復實驗, 高頻分量 a的取值范圍為 ~ 0 .08,低頻分量 a的取值范圍為 ~ 。(i ,j)是在原始圖像的 (i ,j)位置上嵌入的水印小波系數(shù)值,“ a”是嵌入強度 ,其取值應權(quán)衡不可見性和魯棒性要求 ,a越大 , 水印雖越強壯,但是嵌入水印的圖像質(zhì)量就會降低。(i ,j) (4. 3) 其中 X39。(LL,i,j); 4. 對原始圖像為 X采用 Haar小波變換對其進行三級小波分解,得到低頻分量小波系數(shù) x( LL3 ,i,j)、水平分量小波系數(shù) x(LHn ,i,j) 、垂直分量小波系數(shù) x(HLn ,i,j)和對角分量小波系數(shù) x(HHn ,i,j) , n =1,2,3; 5. 參照對嵌入位置的分析,用水印的小波系數(shù)按下式修改原始圖像的波系數(shù) : X39。(HL,i,j) 、對角分量小波系數(shù) w39。 置亂次數(shù) k作為密鑰; 3. 對置亂后的水印圖像 W’采用 Haar小波變換進行一級小波分解,得到平w39。 ,有較好的穩(wěn)定性,在圖像有一定失真的情況下,仍能保留主要成份,最后又將水印圖像經(jīng)小波分解后的低頻分量二次嵌入到原始圖像的低頻分量中。具體嵌入位置如下 :(與水印嵌入在低頻系數(shù)的比較在下節(jié)實驗中體現(xiàn) ) 分量上 (中頻分量 );水印圖像一級小波分解后的垂直分量嵌入到原始圖像小波分 解后的第二級垂直分量上;水印圖像一級小波分解后的對角分量嵌入到原始圖像小波分解后的第二級對角分量上。 基于小波變換的數(shù)字水印算法 將水印的嵌入位置選擇為原始圖像經(jīng)過小波三級分解后的中頻和低頻分量上。低通濾波等等。 嵌入水印的圖象 DCT 變換 提取分塊的水印信息 合并分塊水印并得到完整水印 結(jié) 束 開 始 南昌航空大學學士學位論文 29 仿真實驗采用的原始圖像為 382?382的灰度級圖像: 圖 原始圖像 水印圖像是 64?64的二值圖像: 圖 水印圖像 下圖是用 Matlab 軟件進行試驗的結(jié)果 : 圖 原始圖像和水印圖像 圖 含水印圖像 南昌航空大學學士學位論文 30 圖 對嵌入水印的圖像進行旋轉(zhuǎn)攻擊,然后提取水印 實驗結(jié)果分析 在本算法中,運用離散余弦變換嵌入水印,是嵌入在原圖像的低頻部分。 離散余弦變換水印嵌入算法流程圖如下: 南昌航空大學學士學位論文 27 圖 離散余弦變換水印嵌入算法流程圖 離散余弦變換水印提取算法 設(shè)圖像 D 為已經(jīng)加載了水印的載體圖像,現(xiàn)要將所加載的水印從 D 中提取出來 ,其過程為上述加載水印算法的逆運算: 原始圖像 88分塊處理 DCT 變換 88分塊處理 水印圖像 通過算法改變水印信息形式 水印的嵌入 IDCT 變換 嵌入水印圖像 開 始 結(jié) 束 南昌航空大學學士學位論文 28 1. 將 D 分解為 (M/8) (N/8)個 8 8大小的方塊 BD; 2. 對每一個 BD進行二維 DFT 變換 :DBD=DCT(BD); 3. 提取數(shù)據(jù)對每一個 DBD,按照式 V’ =1/A DBD 得到 V’; 4. 將上面得到的所有 V’合并成一個水印整圖 J’。 基于離散余弦變換的數(shù)字水印算法 南昌航空大學學士學位論文 26 離散余弦變換水印嵌入算法 數(shù)字圖像水印算法選擇二值化灰度圖像作為水印信息,根據(jù)水印圖像的二值性選擇不同的嵌入系數(shù),并將載體圖像進行 8 8的分塊,將數(shù)字水印的灰度值直接植入到載體灰度圖像的 DCT 變換域中,實現(xiàn)水印的嵌入。 實驗結(jié)果及分析 仿真實驗程序與圖像 Matlab實現(xiàn)程序見附錄 B。 4.計算嵌入水印幅度譜與偽隨機序列的相關(guān)性,并按照嵌入時的規(guī)則產(chǎn)生水印矩陣。 6.對每一圖像塊進行 DFT逆變換,得到含水印圖像 ? ? ? ?8,1),(8,1),( ?????????????? nmnmfI D F Tnmnmf kk () 8,1),(),(1 ????????? ? nmnmfnmfKk k? () 提取算法原理 南昌航空大學學士學位論文 23 圖 水印提取流程圖 水印提取算法是嵌入算法的逆過程 1.子塊劃分 將嵌入水印圖像分成 8 8的圖像子塊 : 8,1),(),( 1 ??????? ? nmnmfnmf Kk k? () 2.對每一圖像塊進行 DFT變換 ? ?8,1),(),( ????????? nmnmfD F TvuF kk 8,1 ???? vu () 嵌入水印圖像 子塊劃分 DFT 變換 產(chǎn)生偽隨機序列 計算幅度譜與偽隨機序列的相關(guān)性系數(shù) Arnold 置亂 提取水印 結(jié) 束 開 始 南昌航空大學學士學位論文 24 然后做 FFT 平移 ,對于二維矩陣將一、三象限與二、四象限互換,使得直流分量位于中 間。當水印元素為‘ 1’時, 用另一個偽隨機序列與幅度譜對應元素進行乘性疊加。 3.將二值水印用 Arnold變換置亂 4.產(chǎn)生兩個不相關(guān)的偽隨機序列 由于 DFT域的幅度譜具有對稱性,為了水印嵌入后保持這種對稱性不變,也為了確?;謴蛨D像像素值為實數(shù),嵌入水印時采用對稱嵌入,即: ?? ??????? ??? ))9,9(())9,9(( )),(()),(( crFA m pl i t udecrFA m pl i t ude crFA m pl i t udecrFA m pl i t ude kk kk () 式中 ()Amplotude 為取復數(shù)的幅度, ? 為嵌入信息。置亂水印矩陣值為 0時用一個偽隨機序列與原始圖像的幅度譜進行乘性疊加,矩陣值為 1時,用另一個偽隨機序列與原始圖像幅度譜進行乘性疊加。 原始圖像 子塊劃分 DFT 變換 二值水印 Arnold 置亂 產(chǎn)生偽隨機序列 修改相應的幅度譜值 IDFT 變換 嵌入水印圖像 開 始 結(jié) 束 南昌航空大學學士學位論文 22 首先將原始圖像劃分子塊 ,對每一圖像塊進行 DFT變換,將二值水印圖像用 Arnold變換置亂。 Dyson 和 Falk 分析了離散 Arnold 變換的周期性,給出了對于任意 N2, Arnold變換的周期 2/2NT? 。類似的變換還有面包師變換。 注意到 ()式定義的 Arnold 變換實際上是一種點的位置移動,且這種變換是一一對應的。如 南昌航空大學學士學位論文 20 果我們對一個數(shù)字圖像迭代地使用離散化的 Arnold 變換 ,即將左端輸出的????????yx作為下一次 Arnold 變換的輸入 ,可以重復這個過程一直下去。yx為輸出 , 考慮其反饋 , 有 ?2,1,0,),(,m o d1 ???? njiPNAPP nnijnijnij () 通過離散點的置換 ,同時把圖像信息移植過來 ,當遍歷了原圖象的所有點之后 ,便產(chǎn)生了一副新的圖像。 ????????????????????? NyxNyxyx ? () 由此做迭代變換 ,記 A= ?????? 2111 ,式中 ??????yx為輸入 ,左端 ??????39。實際上,可以令離散圖像的
點擊復制文檔內(nèi)容
醫(yī)療健康相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1