freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

外文翻譯--車床及其切削加工(參考版)

2025-05-17 05:50本頁面
  

【正文】 engagement) is the distance that the cutting edge engages or projects below the original surface of the workpiece. The depth of cut determines the final dimensions of the workpiece. In taming, with an axial feed, the depth of cut is a direct measure of the decrease in radius of the workpiece and with radial feed the depth of cut is equal to the decrease in the length of workpiece. In drilling, the depth of cut is equal to the diameter of the drill. For milling, the depth of cut is defined as the working engagement ae and is the radial engagement of the cutter. The axial engagement (back engagement) of the cutter is called ap. The chip thickness hi in the undeformed state is the thickness of the chip measured perpendicular to the cutting edge and in a plane perpendicular to the direction of cutting. The chip thickness after cutting (i. e., the actual chip thickness h2) is larger than the undeformed chip thickness, which means that the cutting ratio or chip thickness ratio r =h1/h2 is always less than unity. Chip Width The chip width b in the tmdeformed state is the width of the chip measured alo ng the cutting edge in a plane perpendicular to the direction of cutting. For singlepoint too! operations, the area of cut A is the product of the undeformed chip thickness h l and the chip width b (., A = h1b). The area of cut can also be expressed by the feedf and the depth of cut a as follows: H1=f sink and b = a/sink Where k is the major cutting edge angle (i. e., the angle that the cutting edge forms with the working plane). Consequently, the area of cut is given by A =fa 。 that is, fzis the displacement of the workpiece between the cutting action of two successive teeth. The feed speed vf(mm/rain) of the table is therefore the product of the number of teeth z of the cutter, the revolutions per minute of the cutter n, and the feed per tooth(vf=nzfz). A plane containing the directions of the primary motion and the feed motion is defined as the working plane, since it contains the motions responsible for the cutting action. In turning the depth of cut a (sometimes also called back in turning the feed motion is a continuous translation of the tool, and in planing it is an intermittent translation of the tool. The cutting speed v is the instantaneous velocity of the primary motion of the tool relative to the workpieee (at a selected point on the cutting edge). The cutting speed for turning, drilling, and milling processes can be expressed as v = ? dn m/min Where v is the cutting speed in m/min,d the diameter of the workpiece to be cut in meters, and n the workpiece or spindle rotation in rev/min. Thus v, d, and n may relate to the work material or the tool, depending on the specific kinematic pattern. In grinding the cutting speed is normally measured in m/s. The feed motion f is provided to the tool or the workpiece and, when added to the primary motion, leads to a repeated or continuous chip removal and the creation of the desired machined surface. The motion may proceed by steps or continuously. The feed speed vf is defined as the instantaneous velocity of the feed motion relative to the workpiece (at a selected point on the cutting edge). For mining and drilling, the feed f is measured per revolution (mm/rev) of the workpiece or the tool。 11 desired tolerances, and surfaces. The amount of scrap may vary from a few percent to 70% 80% of the volume of the original work material. Owing to the rather poor material utilization of the metalcutting processes, the anticipated scarcity of materials and energy,and increasing costs, the development in the last decade has been directed
點擊復(fù)制文檔內(nèi)容
畢業(yè)設(shè)計相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1