【總結(jié)】四種命題【學(xué)習(xí)目標(biāo)】了解原命題、逆命題、否命題、逆否命題這四種命題的概念.【自主學(xué)習(xí)】下列四個(gè)命題中,命題(1)與命題(2)、(3)、(4)的條件與結(jié)論之間分別有什么關(guān)系?(1)若f(x)是正弦函數(shù),則f(x)是周期函數(shù).(2)若f(x)是周期函數(shù),則f(x)是正弦函數(shù).(3)若f(x)
2024-12-05 06:41
【總結(jié)】曲線與方程(2)【使用說(shuō)明及學(xué)法指導(dǎo)】1.先自學(xué)課本,理解概念,完成導(dǎo)學(xué)提綱;2.小組合作,動(dòng)手實(shí)踐?!緦W(xué)習(xí)目標(biāo)】1.求曲線的方程的方法:待定系數(shù)法,直接法,代入法。2.通過(guò)曲線的方程,研究曲線的性質(zhì).【重點(diǎn)】求曲線的方程【難點(diǎn)】通過(guò)曲線的方程,研究曲線的性質(zhì)一、自主學(xué)習(xí)P36~P37,找出
2024-11-28 00:11
【總結(jié)】曲線與方程(1)【使用說(shuō)明及學(xué)法指導(dǎo)】1.先自學(xué)課本,理解概念,完成導(dǎo)學(xué)提綱;2.小組合作,動(dòng)手實(shí)踐?!緦W(xué)習(xí)目標(biāo)】1.理解曲線的方程、方程的曲線;2.求曲線的方程.【重點(diǎn)】理解曲線的方程、方程的曲線【難點(diǎn)】求曲線的方程一、自主學(xué)習(xí)P34~P36,找出疑惑之處復(fù)習(xí)1:畫出函數(shù)22yx?
2024-11-18 16:53
【總結(jié)】aC'B'A'D'DABCGMC'B'A'D'DABC空間向量及其加減數(shù)乘運(yùn)算【學(xué)習(xí)目標(biāo)】,掌握空間向量的線性運(yùn)算及其性質(zhì);、減法、數(shù)乘及它們的運(yùn)算律;【自主學(xué)習(xí)】空間向量,談?wù)効臻g向量的概念、表示方法。思考:
2024-11-19 23:24
【總結(jié)】空間向量及其運(yùn)算【使用說(shuō)明及學(xué)法指導(dǎo)】1.先自學(xué)課本,理解概念,完成導(dǎo)學(xué)提綱;2.小組合作,動(dòng)手實(shí)踐。【學(xué)習(xí)目標(biāo)】1.理解空間向量的概念,掌握其表示方法;2.會(huì)用圖形說(shuō)明空間向量加法、減法、數(shù)乘向量及它們的運(yùn)算律;3.能用空間向量的運(yùn)算意義及運(yùn)算律解決簡(jiǎn)單的立體幾何中的問(wèn)題.【重點(diǎn)】能用空間向量的運(yùn)算意義及運(yùn)算律解決
2024-11-18 16:52
【總結(jié)】空間向量的數(shù)量積(一)【學(xué)習(xí)目標(biāo)】;;?!咀灾鲗W(xué)習(xí)】:::補(bǔ)充定義:零向量與任何向量的數(shù)量積為______________.:①___________________②__________________③___________________【自主檢測(cè)】
2024-12-05 01:52
【總結(jié)】空間向量的正交分解及其坐標(biāo)表示【學(xué)習(xí)目標(biāo)】⒈了解空間向量基本定理及其推論;⒉理解空間向量的基底、基向量的概念.理解空間任一向量可用空間不共面的三個(gè)已知向量唯一線性表示奎屯王新敞新疆【自主學(xué)習(xí)】空間向量基本定理與平面向量基本定理類似,區(qū)別僅在于基底中多了一個(gè)向量,從而分解結(jié)果中多了一“項(xiàng)”.證明的思路、步驟也基本相同.我們
2024-12-05 06:40
【總結(jié)】《橢圓》導(dǎo)學(xué)橢圓是我們生活中常見的一種曲線,如汽車油罐的橫截面、太陽(yáng)系中九大行星及其衛(wèi)星運(yùn)動(dòng)的軌道、部分彗星的軌道等等都是橢圓形。研究橢圓的方程及其幾何性質(zhì),可以幫助我們解決一些實(shí)際問(wèn)題。橢圓是解析幾何的重要內(nèi)容,是高考??嫉闹R(shí)點(diǎn)之一。知識(shí)要點(diǎn)梳理1、橢圓的定義:平面內(nèi)與兩個(gè)定點(diǎn)F1、F2的距離的和等于常數(shù)(大于│F1F2│)的點(diǎn)的軌跡叫做
2024-12-05 03:04
【總結(jié)】課題雙曲線及其標(biāo)準(zhǔn)方程學(xué)習(xí)目標(biāo),幾何圖形和標(biāo)準(zhǔn)方程的推導(dǎo)過(guò)程...,承上啟下;可以結(jié)合實(shí)例,觀察分析,培養(yǎng)“應(yīng)用數(shù)學(xué)意識(shí)”,進(jìn)一步鞏固數(shù)形結(jié)合思想.學(xué)習(xí)重點(diǎn):掌握雙曲線的標(biāo)準(zhǔn)方程,會(huì)利用雙曲線的定義和標(biāo)準(zhǔn)方程解決簡(jiǎn)單的問(wèn)題。學(xué)習(xí)難點(diǎn):幾何圖形和標(biāo)準(zhǔn)方程的推導(dǎo)過(guò)程.學(xué)習(xí)方法:以講學(xué)稿為依托
2024-11-19 15:17
【總結(jié)】B'C'CBA251213A'xOy雙曲線的簡(jiǎn)單幾何性質(zhì)(一)【學(xué)習(xí)目標(biāo)】掌握雙曲線的范圍、對(duì)稱性、頂點(diǎn)、漸近線、離心率等幾何性質(zhì).【自主學(xué)習(xí)】雙曲線的簡(jiǎn)單幾何性質(zhì):1.范圍、對(duì)稱性2.頂點(diǎn)頂點(diǎn):??0,),0,(21aAaA?特殊點(diǎn):
【總結(jié)】【課堂新坐標(biāo)】(教師用書)2021-2021學(xué)年高中數(shù)學(xué)橢圓的標(biāo)準(zhǔn)方程課后知能檢測(cè)蘇教版選修2-1一、填空題1.橢圓25x2+16y2=400的焦點(diǎn)坐標(biāo)為________.【解析】橢圓方程可化為x216+y225=1,∴c2=9,∴c=3,∴焦點(diǎn)坐標(biāo)為(0,±3).
2024-12-05 09:30
【總結(jié)】空間向量運(yùn)算的坐標(biāo)表示【學(xué)習(xí)目標(biāo)】⒈掌握空間向量坐標(biāo)運(yùn)算的規(guī)律;,判斷兩個(gè)向量共線或垂直;【自主學(xué)習(xí)】若123(,,)aaaa?,123(,,)bbbb?,則_________??ab,_____________??ab,_____________()??
【總結(jié)】圓的簡(jiǎn)單幾何性質(zhì)(三)【學(xué)習(xí)目標(biāo)】1.掌握橢圓的第二定義;2.能利用橢圓的第二定義解決相關(guān)的問(wèn)題.【典型例題】例1.點(diǎn)(,)Mxy與定點(diǎn)(4,0)F的距離和它到直線25:4lx?的距離之比是常數(shù)45,求點(diǎn)M的軌跡,并說(shuō)明軌跡是什么圖形.思考:
2024-11-19 19:35
【總結(jié)】空間向量的數(shù)量積(二)【學(xué)習(xí)目標(biāo)】利用空間向量的數(shù)量積解決立體幾何中的一些簡(jiǎn)單問(wèn)題。【自主學(xué)習(xí)與檢測(cè)】在正方體1111ABCDABCD?中,點(diǎn)M是AB的中點(diǎn),(1)求證;1ACDB?三、求1DB與CM所成角的余弦值。完成此題后,請(qǐng)你比較傳統(tǒng)證法與向量證法的優(yōu)劣。
【總結(jié)】aBAOlP空間向量的數(shù)乘運(yùn)算【學(xué)習(xí)目標(biāo)】理解空間向量共線、共面的充要條件【自主學(xué)習(xí)】1.共線向量與平面向量類似,如果表示空間向量的有向線段所在的直線互相平行或重合,則這些向量叫做共線向量或平行向量,記作ba??//.當(dāng)向量a?、b?共線(或a?//b?)時(shí),表示a?、b