freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

倍數(shù)與因數(shù)教學(xué)反思-wenkub.com

2024-10-08 21:29 本頁面
   

【正文】 他們認(rèn)為這也是表示倍數(shù)的方法之一,很好呀。”孫廣海主動到黑板上畫出來。二、在《倍數(shù)》的教學(xué)中,探討倍數(shù)的表示方法,學(xué)生匯報出用列舉法和集合法后,徐帥站起來說:“老師還有一種表示方法!”。為什么一個數(shù)的倍數(shù)的個數(shù)是無限的?最小是它本身,沒有最大的。如判斷一個數(shù)的因數(shù)的個數(shù)是無限的,不少學(xué)生判斷為對。誘發(fā)學(xué)生探索與學(xué)習(xí)的欲望,從而激活學(xué)生的思維。由于個人經(jīng)驗和思維的差異性,出現(xiàn)了不同的答案,但這些不同的答案卻成為探索新知的資源,在比較不同的答案中歸納出求一個數(shù)的因數(shù)的思考方法。在同一個乘法算式中,兩者都是指乘號兩邊的整數(shù),但前者是相對于“積”而言的,與“乘數(shù)”同義,可以是小數(shù),而后者是相對于“倍數(shù)”而言的,兩者都只能是整數(shù)。60=12,一石激起千層浪,學(xué)生面面相覷,我趁熱打鐵,那就讓我們再到書中去尋找答案吧。于是我因勢利導(dǎo)讓學(xué)生打開書自主學(xué)習(xí),看看有什么發(fā)現(xiàn)。對于這節(jié)課的教學(xué),我特別注意從以下幾個方面來幫助學(xué)生理解因數(shù)和倍數(shù)的概念。我覺得這部分內(nèi)容學(xué)生初次接觸,對于學(xué)生來說是比較難掌握的內(nèi)容。a=c,表示b能被a整除,b247。雖然我們強調(diào)從生活的角度引出數(shù)學(xué)知識,但本單元不太容易與具體情境結(jié)合起來,如質(zhì)數(shù)、合數(shù)等概念,很難從生活實際中引入。要解決教學(xué)中出現(xiàn)的問題,經(jīng)過反思,我認(rèn)為要做好兩點:(1)加強對概念間相互關(guān)系的梳理,引導(dǎo)學(xué)生從本質(zhì)上理解概念,避免死記硬背。這一單元的內(nèi)容與原來教材比較有了很大的不同,老教材中是先建立整除的概念,再在此基礎(chǔ)上認(rèn)識因數(shù)倍數(shù),而現(xiàn)在是在未認(rèn)識整除的情況下直接認(rèn)識倍數(shù)和因數(shù)的。在這節(jié)課中我例題與例題之間比較離散,練習(xí)不緊密,導(dǎo)致教學(xué)時例題與例題之間跳躍性比較強,聽起來比較散,不集中,主線不分明。課堂引入環(huán)節(jié),我采用了純數(shù)學(xué)的引入方式,但是這樣的引入不夠好,其實可以采用張齊華老師曾經(jīng)使用過的圖形結(jié)合的引入:用12個小正方形搭實心長方形,這樣的引入不僅可以圖形結(jié)合地引入因數(shù)倍數(shù),而且可以比較自然地讓學(xué)生感知限制因數(shù)倍數(shù)研究范圍為非0自然數(shù)這個知識點?!兑驍?shù)與倍數(shù)》教學(xué)反思12這段時間我參加省領(lǐng)雁工程數(shù)學(xué)骨干班學(xué)習(xí)活動掛職鍛煉活動。因此,用直接導(dǎo)入法,先復(fù)習(xí)自然數(shù)的概念,再寫出乘法算式3*4=12,說明在這個算式中,3和4是12的因數(shù),12是3和4的倍數(shù)?!耙驍?shù)與倍數(shù)”的運用范圍就是在非0自然數(shù)的范疇之內(nèi),與小數(shù)無關(guān),與分?jǐn)?shù)無關(guān),與負(fù)數(shù)無關(guān)(雖沒學(xué),但有小部分學(xué)生了解)。我們可以說“”,但不能說””。在同一個乘法算式中,兩者都是指乘號兩邊的整數(shù),但前者是相對于“積”而言的,與“乘數(shù)”同義,可以是小數(shù)。因此,我通過學(xué)習(xí)教參了解到以下信息:學(xué)生的原有知識基礎(chǔ)是在已經(jīng)能夠區(qū)分整除與余數(shù)除法,對整除的含義有比較清楚的認(rèn)識,不出現(xiàn)整除的定義并不會對學(xué)生理解其他概念產(chǎn)生任何影響。無論是從宏觀方面——內(nèi)容的劃分,還是從微觀方面——具體內(nèi)容的設(shè)計上都獨具匠心。學(xué)生在思維上得到了訓(xùn)練,探究問題、尋求解決問題策略的潛力也會逐步得到提高。三、學(xué)練結(jié)合,及時把握學(xué)生學(xué)情。學(xué)生找倍數(shù)的方法有:依次加依次乘3……、用乘法口訣等等。對感知倍數(shù)和因數(shù)進行有效的滲透和拓展。如何借助教材這一載體,讓學(xué)生在互動、探究中掌握相應(yīng)的知識,讓乏味變成有味呢?我從以下兩個方面談一點教學(xué)體會?!兑驍?shù)與倍數(shù)》教學(xué)反思10北師大版五年級數(shù)學(xué)上、第三單元第一節(jié)《倍數(shù)與因數(shù)》是一節(jié)概念課。先給學(xué)生足夠的時間讓學(xué)生自己去找,我們要相信他們藕能力做到。在教學(xué)的時候,同時注培養(yǎng)學(xué)生有序?qū)懗霰稊?shù),注意倍數(shù)書寫的格式等意識,可以比較有序的找和無序的找,讓學(xué)生自己感受有序的好處,學(xué)生有了有序地找的基本方法后,在進行練習(xí)的時候也會選擇剛才優(yōu)化過的好的方法進行練習(xí)。說完后再給學(xué)生一個提醒,并讓學(xué)生再根據(jù)出示的算式說一說誰是誰的倍數(shù)和誰是誰的因數(shù),最后的時候讓學(xué)生自己寫一個算式,并說一說。倍數(shù)和因數(shù)的意義。課后工作室的成員給了我很多的很好的建議,我根據(jù)好的建議修改了我的教學(xué)設(shè)計,下面我來具體的說一說。書寫格式這一細(xì)節(jié)的教學(xué),既避免了教師羅嗦的講解,又有效突破了教學(xué)難點,我相信像這樣潤物無聲的細(xì)節(jié),無論于學(xué)生、于課堂都是有利無弊的。4=9。所以在學(xué)生交流匯報時,我結(jié)合學(xué)生所敘思維過程,相機引導(dǎo)并形成有條理的板書,如:36247。至于這兩種方法孰重孰輕,的確難以定論。本課的教學(xué)重點是求一個數(shù)的因數(shù),在學(xué)生已掌握了因數(shù)、倍數(shù)的概念及兩者之間的關(guān)系的基礎(chǔ)上,對學(xué)生而言,怎樣求一個數(shù)的因數(shù),難度并不算大,因此教學(xué)例題“找出18的因數(shù)”時,我先放手讓學(xué)生自己找,學(xué)生在獨立思考的過程中,自然而然的會結(jié)合自己對因數(shù)概念的理解,找到解決問題的方法(培養(yǎng)學(xué)生對已有知識的運用意識),然后在交流中不難發(fā)現(xiàn)可用乘法或除法來求一個數(shù)的因數(shù)(列出積是18的乘法算式或列出被除數(shù)是18的除法算式)。今后,應(yīng)努力改進教學(xué)手段,提高學(xué)困生的學(xué)習(xí)效率。最后引導(dǎo)學(xué)生歸納總結(jié)出一個數(shù)的因數(shù)的特點時,由于及時跟上個性化的語言評價,激活了學(xué)生的情感,學(xué)生的思維不斷活躍起來。但在實際交流時,學(xué)生的方法出現(xiàn)了兩種意見,并且各抒己見,因為15的因數(shù)只有兩對,無論怎樣找都不會遺漏。 這樣,用學(xué)生已有的數(shù)學(xué)知識引出了新知識,減緩了難度,這一環(huán)節(jié)的教學(xué),我覺得還是收到了預(yù)設(shè)的效果。本課中還要注意到的就是學(xué)生在匯報找到了哪些數(shù)的因數(shù)時,教師根據(jù)學(xué)生匯報所選擇板書的數(shù)字要有多樣性,如選擇板書的數(shù)要有奇數(shù)、偶數(shù)、質(zhì)數(shù)、合數(shù)等,雖然此時學(xué)生還不知道這些數(shù)的概念,但這時給學(xué)生一個全面的正面印象,有的數(shù)因數(shù)個數(shù)多,有的少,不是一個數(shù)越大因數(shù)的個數(shù)越多……為后面的學(xué)習(xí)做好鋪墊。不太明白為什么一定要使用“因數(shù)”這個概念,比較“因數(shù)——公因數(shù)——最大公因數(shù)——約分”和“約數(shù)——公約數(shù)——最大公約數(shù)——約分”,總覺得后者容易接受吧。在思考“哪幾種拼法”時,借助“拼小正方形”的活動,使數(shù)與形有機地結(jié)合,防止學(xué)生進行“機械地學(xué)習(xí)”;學(xué)生對因數(shù)和理解不僅是數(shù)字上的認(rèn)識,而且能與操作活動與圖形描述聯(lián)系起來,促進了學(xué)生的有意義建構(gòu),這是一個“先形后數(shù)”的過程,是一個知識抽象的過程。在教學(xué)中,我是從培養(yǎng)學(xué)生的問題意識出發(fā)來組織教學(xué)的,首先讓學(xué)生獨立觀察主題圖,通過獨立思考提出問題;然后讓孩子們通過小組合作,共享學(xué)習(xí)的成果;最后通過解決問題,體驗獲取知識的過程。當(dāng)孩子們還意猶未盡時,下課鈐響了,我們結(jié)束了這節(jié)課。于是改變了原來的教學(xué)程序,我讓學(xué)生寫出20以內(nèi)的自然數(shù),提問:“看著這些數(shù),請你說說它們中的哪些數(shù)與其它數(shù)與眾不同呢?”學(xué)生的興趣馬上被激發(fā)起來,經(jīng)過短暫的思考后,張慧同學(xué)第一個站起來說:“1與眾不同,它既不是質(zhì)數(shù),也不是合數(shù),是最小的奇數(shù)。因為這些知識,對于優(yōu)生來說,無需強調(diào),這樣的課對他們來說,作用不大,激不起他們的一點興趣;對于中等生來說,對他們的知識是一種促進,但學(xué)生的學(xué)習(xí)是被動的;對學(xué)困生來說,收獲也不大。,新教材增加了探索兩數(shù)之和的奇偶性的純數(shù)學(xué)問題,可以根據(jù)兩數(shù)之和的奇偶性的規(guī)律推理出兩數(shù)之差、兩數(shù)之積的奇偶性,并滲透解決問題的策略。本冊新教材采用整數(shù)除法的表示形式教學(xué),便于學(xué)生感知因數(shù)和倍數(shù)的本質(zhì)意義。2.利用求倍數(shù)的方法解決生活中的實際問題出示:媽媽買來幾個西瓜,2個2個地數(shù),正好數(shù)完,5個5個地數(shù),也正好數(shù)完。學(xué)生獨立完成全部練習(xí)后教師組織學(xué)生進行集體證正。師:從前面找因數(shù)和倍數(shù)的過程中,你有什么發(fā)現(xiàn)?先讓學(xué)生在小組內(nèi)交流,再組織全班集體交流,通過全班交流,引導(dǎo)學(xué)生認(rèn)識以下三點:(1)一個數(shù)的最小因數(shù)是1,最大因數(shù)是它本身。(4)即時練習(xí)。2=2 6247。師:大家都是用的什么方法呢?生1:我是用乘法口訣,一二得二,二二得四……這樣寫下去的。教學(xué)準(zhǔn)備:多媒體。在解決問題的過程中,培養(yǎng)學(xué)生概括、分析和比較的能力,使學(xué)生體會數(shù)學(xué)知識的內(nèi)在聯(lián)系。第二單元:因數(shù)和倍數(shù)第二課時:因數(shù)與倍數(shù)(2)教學(xué)內(nèi)容:教材P6例3及練習(xí)二第2(1)、3~8題。四、課堂小結(jié)師:通過本節(jié)課的學(xué)習(xí),你有什么收獲?板書設(shè)計:因數(shù)和倍數(shù)12247。30的因數(shù)有1,2,3,5,6,10,15,30。教師指出也可用右面的集合圖來表示18的全部因數(shù)。(2)小組合作交流。1=18,l和18是18的因數(shù);18247。(二)、探索找一個數(shù)因數(shù)的方法。指導(dǎo)學(xué)生完成教材第5頁“做一做”。例如,30247。教師讓學(xué)生說一說第一類的每個算式中,誰是誰的因數(shù)?誰是誰的倍數(shù)?先同桌互相說一說,再組織全班交流。教師指出:在整數(shù)除法中,如果商是整數(shù)而沒有余數(shù),我們就說被除數(shù)是除數(shù)和商的倍數(shù),除數(shù)和商是被除數(shù)的因數(shù)。8=2.引入課題。9=7 第二類 9247。2=620247。7≈247。5=247。教學(xué)準(zhǔn)備:多媒體。、態(tài)度與價值觀:理解因數(shù)和倍數(shù)的意義能及兩者之間相互依存的關(guān)系。書寫格式這一細(xì)節(jié)的教學(xué),既避免了教師羅嗦的講解,又有效突破了教學(xué)難點。4=9,36247。所以在學(xué)生交流匯報時,我結(jié)合學(xué)生所敘思維過程,相機引導(dǎo)并形成有條理的板書,如:36247。能不重復(fù)、不遺漏、有序地找出一個數(shù)的倍數(shù)和因數(shù),是本課的教學(xué)難點。教學(xué)時,我首先讓學(xué)生動手操作把12個小正方形擺成不同的長方形,再讓學(xué)生寫出不同的乘法算式,借助乘法算式引出倍數(shù)和因數(shù)的意義。目的是以練習(xí)促復(fù)習(xí),在練習(xí)中更好的體會這些概念的具體含義,加深學(xué)生對概念的理解和掌握。在教學(xué)中,我首先通過一個聯(lián)想接龍的游戲調(diào)動學(xué)生學(xué)習(xí)的興趣,讓學(xué)生利用因數(shù)和倍數(shù)單元的知識來描述數(shù)字2,學(xué)生非常容易想到2是最小的質(zhì)數(shù)、2是偶數(shù)、2的因數(shù)是1和2的倍數(shù)有2,4,6…、2的倍數(shù)特征是個位是0、8的數(shù),通過學(xué)生的回答教師及時抓住其中的關(guān)鍵詞引出本單元的所有概念:因數(shù)、倍數(shù)、質(zhì)數(shù)、合數(shù)、奇數(shù)、偶數(shù)、公因數(shù)、最大公因數(shù)、公倍數(shù)、最小公倍數(shù)、5的倍數(shù)的特征。由于本節(jié)課的容量比較大,練習(xí)題設(shè)計綜合性比較強,學(xué)生學(xué)得并不輕松,還存在一小部分學(xué)生沒有很好地理解因數(shù)與倍數(shù)的關(guān)系。雖然在這個環(huán)節(jié)上花了比較多的時間,但對學(xué)生自主探索、自主學(xué)習(xí)起到了很好的促進作用。預(yù)設(shè)在匯報時,能借此解決如何有序、不重復(fù)、不遺漏地找出一個數(shù)的因數(shù)。借助乘法算式引出因數(shù)和倍數(shù)的意義,使學(xué)生初步建立了“因數(shù)與倍數(shù)”的概念。只要是能促進學(xué)生能力形成的東西,我們不能因為要運用模式而把它們淡化,反之,應(yīng)該想方設(shè)法,在不知不覺中體現(xiàn)出來。這樣做目的有二:一是滲透了從乘法算式中找因數(shù)倍數(shù)的方法,二是利用數(shù)與數(shù)之間的關(guān)系明確的看到因數(shù)倍數(shù)這種相互依存的關(guān)系?!侗稊?shù)與因數(shù)》教學(xué)反思12《因數(shù)和倍數(shù)》是人教版小學(xué)數(shù)學(xué)五年級下冊第二單元的起始課,也是一節(jié)重要的數(shù)學(xué)概念課,所涉及的知識點較多,內(nèi)容較為抽象,對于學(xué)生來說是比較難掌握的內(nèi)容,在這樣的前提下,如何能充分發(fā)揮學(xué)生的主體作用,讓他們自主探索,自己感悟概念的內(nèi)涵,并靈活地運用“先學(xué)后教”的模式,達到課堂的高效,在課堂中我做了以下的嘗試。找一個數(shù)的倍數(shù)因為方法比較易于掌握,沒有過多的練習(xí),二是激發(fā)他們想象一個數(shù)的倍數(shù)有什么特點。學(xué)生結(jié)合一個乘法算“34=12”入手,介紹因數(shù)與倍數(shù)概念,這樣有助于更好理解,也能節(jié)約很多時間。還好,上完課后感覺還可以。多反思認(rèn)真分析教學(xué)中出現(xiàn)的問題,通過不斷地反思提高自己業(yè)務(wù)水平。由于長期的教學(xué)習(xí)慣和自身的性格特點造成了我的語言在某些時候不夠嚴(yán)謹(jǐn)。如在教學(xué)找36的因數(shù)這一環(huán)節(jié)時,由于擔(dān)心孩子們是第一次接觸因數(shù),對于因數(shù)的39。找共同的朋友則是一個思維的升華過程,能有效地激活學(xué)生的思維,在求知欲的支配下去進行有效地思考。誘發(fā)學(xué)生探索與學(xué)習(xí)的欲望,從而激活學(xué)生的思維。由于個人經(jīng)驗和思維的差異性,出現(xiàn)了不同的答案,但這些不同的答案卻成為探索新知的資源,在比較不同的答案中歸納出求一個數(shù)的因數(shù)的思考方法。由于方法的多樣性,為不同思維的展現(xiàn)提供了空間,激活學(xué)生的形象思維,而透過數(shù)學(xué)潛在的“形”與“數(shù)”的關(guān)系,為下面研究“因數(shù)與倍數(shù)”概念,由形象思維轉(zhuǎn)入抽象思維打下了良好基礎(chǔ),有效地實現(xiàn)了原有知識與新學(xué)知識之間的鏈接。但由于我缺乏時間觀念,這部分時間太倉促,沒有展開練習(xí),學(xué)生沒有盡興,也沒有達到充分地練習(xí)效果。這節(jié)課的練習(xí)設(shè)計緊緊把握概念的內(nèi)涵與外延,設(shè)計有效練習(xí),拓展知識空間。而在探究倍數(shù)時,我則大膽的放手,讓學(xué)生自主探索找一個數(shù)倍數(shù)的方法,給學(xué)生提供了廣闊的思維空間。根據(jù)學(xué)生的實際情況,我進行了重組教材,先讓學(xué)生根據(jù)乘法算式“一對對”地找出15的因數(shù),在此基礎(chǔ)上再讓學(xué)生探究18的因數(shù)。如果長期滲透,運用恰當(dāng),則使學(xué)生形成良好的數(shù)學(xué)意識和思想,長期穩(wěn)固地作用于學(xué)生的數(shù)學(xué)學(xué)習(xí)生涯中。(3)數(shù)形結(jié)合,讓學(xué)生帶著已有知識走進數(shù)學(xué)課堂。因數(shù)和倍數(shù)這節(jié)課研究的是數(shù)和數(shù)之間的關(guān)系,知識內(nèi)容比較抽象。因數(shù)和倍數(shù)是揭示兩個整數(shù)之間的一種相互依存關(guān)系,在課前談話中我利用一個腦筋急轉(zhuǎn)彎,滲透相互依存的關(guān)系。這部分內(nèi)容學(xué)生初次接觸,對于學(xué)生來說是比較難掌握的內(nèi)容。對于倍數(shù)與幾倍的區(qū)別:倍數(shù)必須是在整數(shù)除法中進行研究,而幾倍既可以在整數(shù)范圍內(nèi),也可以在小數(shù)范圍內(nèi)進行研究,它的研究范圍較之倍數(shù)范圍大一些。然后根據(jù)第一類情況得出倍數(shù)和因數(shù)的含義,特別強調(diào)的是對于因數(shù)和倍數(shù)的含義要符合兩個條件:一是必須在整數(shù)除法中,二是必須商是整數(shù)而沒有余數(shù)。課堂中,我首先讓學(xué)生理解分類標(biāo)準(zhǔn),明確因數(shù)和倍數(shù)的含義?!氨丁钡母拍畋取氨稊?shù)”要廣。是我上課時特別注意讓學(xué)生明白什么情況下才能討論因數(shù)和倍數(shù)的概念。尤其對因數(shù)和倍數(shù)是一對相互依存的概念,不能單獨存在,不是很好理解。在探索找一個數(shù)的因數(shù)的方法時,為了讓學(xué)生更加形象地體會出“要按照一定的順序去找”才不會遺漏和重復(fù),本課制作了動態(tài)的數(shù)軸圖,通過演示18的因數(shù)有18(閃動),9(閃動),6(閃動)學(xué)生直觀地看到了“順序”,并且在觀察中看到區(qū)間不斷的縮小,到3至6時觀察區(qū)間,真正體會到了“找前了”這一學(xué)生難以真正理解的地方。如何找一個數(shù)的因數(shù)是這節(jié)課的重點,首先放手讓學(xué)生找出24的因數(shù),由于個人經(jīng)驗和思維的差異,出現(xiàn)了不同的方法與答案,在探索這些方法和答案的過程中,學(xué)生明白了如何求出一個數(shù)的因數(shù)的方法,從而掌握了知識點。改變教材的情境圖,用學(xué)生有興趣的情意引入課題:有12個小方塊,要求擺成一個長方體,你想怎么擺。本節(jié)課又是這一單元的的教學(xué)重點。5是0。在同一個乘法算式中,
點擊復(fù)制文檔內(nèi)容
物理相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1