【總結(jié)】義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書SHUXUE九年級(jí)下湖南教育出版社觀察·OAB記作,AMB記作;AB如圖圓O上兩點(diǎn)A,B間的小于半圓的部分叫作劣弧,A,B間的大于半圓的部分叫作優(yōu)弧,其中M是圓上一點(diǎn).M·
2024-11-28 22:58
【總結(jié)】圓的對(duì)稱性第二課時(shí)九年級(jí)數(shù)下學(xué)期北師大版1、圓是對(duì)稱圖形嗎?它有哪些對(duì)稱性。回顧:圓既是軸對(duì)稱圖形,又是中心對(duì)稱圖形.2、能否用手中的圓演示出它的各種對(duì)稱性呢?圓的對(duì)稱軸在哪里,對(duì)稱中心在哪里?OO'兩個(gè)圓有什么特點(diǎn)?●O用旋轉(zhuǎn)的方法可以得到:一個(gè)圓繞著它的圓
2024-11-06 23:20
【總結(jié)】第2課時(shí)圓的元素之間的關(guān)系1.圓是中心對(duì)稱圖形中心對(duì)稱圓心重合(1)圓是__________圖形,對(duì)稱中心為______.(2)圓的旋轉(zhuǎn)不變性:圓具有旋轉(zhuǎn)不變的特性.即一個(gè)圓繞著它的圓心旋轉(zhuǎn)任意一個(gè)角度,都能與原來的圖形______.圓的中心對(duì)稱性是其旋轉(zhuǎn)不變性的特例.2.圓心角、弧、弦、弦
2024-11-18 19:07
【總結(jié)】圓周角和圓心角的關(guān)系(第一課時(shí))學(xué)習(xí)目標(biāo):(1)理解圓周角的概念,掌握?qǐng)A周角的兩個(gè)特征、定理的內(nèi)容及簡(jiǎn)單應(yīng)用;(2)繼續(xù)培養(yǎng)學(xué)生觀察、分析、想象、歸納和邏輯推理的能力;(3)滲透由“特殊到一般”,由“一般到特殊”的數(shù)學(xué)思想方法.學(xué)習(xí)重點(diǎn):圓周角的概念和圓周角定理學(xué)習(xí)難點(diǎn):圓周角
2024-11-29 12:50
【總結(jié)】課時(shí)第三章第二節(jié)第一課時(shí)課題課型新授課時(shí)間2013年2月26日周二節(jié)次第三節(jié)授課人教學(xué)目標(biāo)1、通過手腦結(jié)合,充分掌握?qǐng)A旳軸對(duì)稱性;2、運(yùn)用探索、推理,充分把握?qǐng)A中旳垂徑定理及其逆定理;3、拓展思維,與實(shí)踐相結(jié)合,運(yùn)用垂徑定理及其逆定理進(jìn)行有關(guān)旳計(jì)算和證明.重點(diǎn)垂徑定理及其逆定理難點(diǎn)垂徑定理及
2024-08-14 06:41
【總結(jié)】一、教材分析:本節(jié)內(nèi)容是前面圓的性質(zhì)的重要體現(xiàn),是圓的軸對(duì)稱性的具體化,也是今后證明線段相等、角相等、弧相等、垂直關(guān)系的重要依據(jù),同時(shí)也是為進(jìn)行圓的計(jì)算和作圖提供了方法和依據(jù),所以它在教材中處于非常重要的位置另外,本節(jié)課通過“實(shí)驗(yàn)--觀察--猜想——合作交流——證明”的途徑,進(jìn)一步培養(yǎng)學(xué)生的動(dòng)手能力,觀察能力,分析、聯(lián)想能力、與人合作
2024-12-05 15:48
【總結(jié)】一、選擇題1、如圖3-33所示,弦CD垂直于⊙O的直徑AB,垂足為E,且CD=22,BD=3,則AB的長為()A.2B.3C.4D.52、如圖3-35所示,⊙
2024-11-28 17:50
【總結(jié)】九年級(jí)數(shù)學(xué)(下)第三章圓2.圓對(duì)稱性(1)垂徑定理圓的對(duì)稱性?圓是軸對(duì)稱圖形嗎?想一想P881駛向勝利的彼岸如果是,它的對(duì)稱軸是什么?你能找到多少條對(duì)稱軸?●O你是用什么方法解決上述問題的??圓是中心對(duì)稱圖形嗎?如果是,它的對(duì)稱中心是什么?你能找到多少條對(duì)稱軸?
2024-11-30 02:40
【總結(jié)】單元2(3-4)圓周角和圓心角的關(guān)系、確定圓的條件典型例題分析例1:等于半徑的弦所對(duì)的圓周角等于。[點(diǎn)撥].畫圖分析,如圖,弦長等于半徑,聯(lián)想等邊三角形,則60AOB??,要注意弦AB所對(duì)圓周角有兩種情況:一是C點(diǎn)在優(yōu)弧ACB上,11603022ACBAOB??????;
2024-11-18 23:39
【總結(jié)】課時(shí)課題:第三章第2節(jié)圓的對(duì)稱性(第二課時(shí))課型:新授課授課時(shí)間:2013年2月27日星期三第一節(jié)學(xué)習(xí)目標(biāo):1.理解圓的旋轉(zhuǎn)不變性;2.利用圓的旋轉(zhuǎn)不變性研究圓心角、弧、弦之間相等關(guān)系的定理.教學(xué)重點(diǎn)與難點(diǎn):重點(diǎn):、弧、弦之間相等關(guān)系的定理.“同圓”或“等圓”的前提條件.難點(diǎn):利用所學(xué)知識(shí)解決問題時(shí)忽視“同圓”或“等圓”的條件.教法
2024-08-26 05:29
【總結(jié)】教學(xué)目標(biāo):1.知識(shí)與技能:圓的旋轉(zhuǎn)不變性,圓心角、弧、弦之間相等關(guān)系定理.2.過程與方法:通過觀察、比較、操作、推理、歸納等活動(dòng)發(fā)展空間觀念、推理能力以及概括問題的能力,利用圓的旋轉(zhuǎn)不變性,研究圓心角、弧、弦之間相等關(guān)系定理.3.情感態(tài)度與價(jià)值觀:培養(yǎng)學(xué)生積極探索數(shù)學(xué)問題的態(tài)度及方法.教學(xué)重點(diǎn):圓心角、弧、弦之間關(guān)系定理教學(xué)
2024-12-01 04:14
【總結(jié)】課題:圓的的對(duì)稱性課型:新授課年級(jí):九年級(jí)教學(xué)目標(biāo):1.經(jīng)歷探索圓的軸對(duì)稱性和中心對(duì)稱性及其相關(guān)性質(zhì)的過程;2.利用圓的旋轉(zhuǎn)不變性研究圓心角、弧、弦之間相等關(guān)系的性質(zhì);3.經(jīng)歷探索圓旋轉(zhuǎn)不變性,進(jìn)一步體會(huì)和理解研究幾何圖形的各種方法.教學(xué)重點(diǎn)與難點(diǎn):重點(diǎn)難點(diǎn):利用圓的旋轉(zhuǎn)不變性研究圓心角、弧
2024-12-08 10:59
【總結(jié)】第2章對(duì)稱圖形——圓圓的對(duì)稱性第2課時(shí)圓的軸對(duì)稱性與垂徑定理知識(shí)目標(biāo)目標(biāo)突破第2章對(duì)稱圖形——圓總結(jié)反思知識(shí)目標(biāo)第2課時(shí)圓的軸對(duì)稱性與垂徑定理1.通過回顧軸對(duì)稱圖形的概念,了解圓是軸對(duì)稱圖形.2.通過探索圓的軸對(duì)稱性,掌握并應(yīng)用垂徑定理求線段的長度.3.通過
2025-06-18 06:53
【總結(jié)】ABCO例1、如圖,AB是⊙O的一條弦,OC⊥AB于點(diǎn)C,OA=5,AB=8。求OC的長。請(qǐng)抄筆記ABCOABCDO例2、如圖,AB是⊙O的一條弦,點(diǎn)C為弦AB的中點(diǎn),OC=3,AB=8,求OA的長。例3、如圖,兩個(gè)圓都以點(diǎn)O為圓心,小圓的弦CD與大圓
2024-11-27 23:45
【總結(jié)】圓的對(duì)稱性●O③AM=BM,?AB是⊙O的一條弦.?你能發(fā)現(xiàn)圖中有哪些等量關(guān)系?與同伴說說你的想法和理由.駛向勝利的彼岸?作直徑CD,使CD⊥AB,垂足為M.●O?右圖是軸對(duì)稱圖形嗎?如果是,其對(duì)稱軸是什么??我們發(fā)現(xiàn)圖中有:ABCDM└?由