【總結(jié)】《一元二次方程的解法》練習(xí)課(2課時(shí))一、教學(xué)目標(biāo):1、掌握一元二次方程的四種解法,會(huì)根據(jù)方程的不同特點(diǎn),靈活選用適當(dāng)?shù)姆椒ㄇ蠼夥匠獭?、方程求解過程中注重方式、方法的引導(dǎo),特殊到一般、字母表示數(shù)、整體代入等數(shù)學(xué)思想方法的滲透。3、培養(yǎng)學(xué)生概括、歸納總結(jié)能力。二、重點(diǎn)、難點(diǎn):1重點(diǎn):會(huì)根據(jù)不同的方程特點(diǎn)選用恰當(dāng)?shù)姆椒ǎ菇忸}過程簡(jiǎn)單合理。2難點(diǎn):通過揭示各種
2025-04-16 12:45
【總結(jié)】一元二次方程的解法(2)解一元二次方程:x2=5;(x+3)2=5.?你用的是什么方法??這兩個(gè)方程的解法有相似之處嗎?你會(huì)解方程x2+6x+4=0嗎?【問題情境】怎樣解方程x2+6x+4=0?比較:方程x2+6x+4=0與(x+3)2=5.解方程x
2024-12-28 00:43
【總結(jié)】第一篇:一元二次方程的解法教學(xué)設(shè)計(jì) 一元二次方程的解法教學(xué)設(shè)計(jì) 教學(xué)目標(biāo): (一)知識(shí)與技能: 1、理解并掌握用配方法解簡(jiǎn)單的一元二次方程。 2、能利用配方法解決實(shí)際問題,增強(qiáng)學(xué)生的數(shù)學(xué)應(yīng)用...
2024-10-28 17:37
【總結(jié)】一元二次方程的解法(6)【問題情境】如何解方程x(x-1)=0.既可以用配方法解,也可以用公式法來(lái)解.解:∵x(x-1)=0,此時(shí)x和x-1兩個(gè)因式中必有一個(gè)為0,即x=0或x-1=0,∴x1=0,x2=1.【概念】當(dāng)一個(gè)一元二次方程的一邊
2024-12-28 00:50
【總結(jié)】一元二次方程的解法(4)你會(huì)解關(guān)于x的方程ax2+bx+c=0(a、b、c是常數(shù),a≠0)嗎?【問題情境】用配方法解下列一元二次方程:x2+2x-3=0.【思考與探索】因?yàn)閍≠0,所以方程兩邊都除以a,得.20bcxxaa???解:移項(xiàng),得.2b
2024-12-28 00:07
【總結(jié)】第1課時(shí)一元二次方程問題情境一:1、你還記得什么叫做方程嗎?2、什么是一元一次方程?它的一般形式是怎樣的?創(chuàng)設(shè)情境引入新課問題情境二:1、如圖,有一塊矩形鐵皮,長(zhǎng)100cm,寬50cm,在它的四個(gè)角分別切去一個(gè)正方形,然后將四周突出的部分折起,就能制
2024-11-21 21:32
【總結(jié)】一.復(fù)習(xí)?我們學(xué)過那些方程???學(xué)習(xí)目標(biāo),根據(jù)一元二次方程的一般式,確定各項(xiàng)系數(shù)解決有關(guān)問題解的概念,并能解決相關(guān)問題.有一塊長(zhǎng)100cm,寬50cm的鐵皮,在它的四周各減去一個(gè)同樣大的正方形,然后制作成一個(gè)無(wú)蓋的地面積為3600cm
2024-11-21 01:22
【總結(jié)】第二章第二課時(shí):一元二次方程Wjl321制作.一元二次方程及其解法(1)一般形式:ax2+bx+c=0(a≠0).(2)一元二次方程的四種解法:①直接開平方法:形如x2=k(k≥0)的形式均可用此法求解.②配方法:要先化二次項(xiàng)系數(shù)為1,然后方程兩邊同加上一次項(xiàng)系數(shù)的一半的平方,配成左邊是完全平
2024-11-06 18:38
【總結(jié)】“消元──二元一次方程組的解法”教學(xué)設(shè)計(jì)一、內(nèi)容和內(nèi)容解析本節(jié)主要內(nèi)容為二元一次方程組的解法,“消元”是解二元一次方程組的基本思路,代入消元和加減消元是“消元”的最基本的方法.探究解二元一次方程組的通解通法,即把解法程序化也是本節(jié)應(yīng)滲透的內(nèi)容。(1)初中代數(shù)研究的中心問題是各類方程,初中代數(shù)中的函數(shù)是初步的,它只起到一
2024-11-24 16:03
【總結(jié)】一元二次方程?學(xué)習(xí)目標(biāo):1.理解一元二次方程的概念;2.掌握一元二次方程的一般形式,正確認(rèn)識(shí)二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)及常數(shù)項(xiàng).?學(xué)習(xí)重點(diǎn):一元二次方程的概念.1.創(chuàng)設(shè)情境,導(dǎo)入新知思考以下問題如何解決:1.要設(shè)計(jì)一座高2m的人體雕像,使它的上部(腰以上)與下部(腰以下)的高度比,等于下
2024-11-22 00:49
【總結(jié)】(第二課時(shí))1、自學(xué)P272、什么叫方程的解?3、一元二次方程的根的情況與一元一次方程有什么不同嗎?自學(xué)檢測(cè)1、下面哪些數(shù)是方程x2-x-6=0的根?-4-3-2-1012342、你能寫出方程x2-x=
2024-11-21 00:05
【總結(jié)】等號(hào)兩邊都是整式,只含有一個(gè)未知數(shù)(一元),并且未知數(shù)的最高次數(shù)是2(二次)的方程叫做一元二次方程(quadraticequationinoneunknown)一元二次方程的概念特點(diǎn):①都是整式方程;②只含一個(gè)未知數(shù);③未知數(shù)的最高次數(shù)是2.ax2+bx+c
【總結(jié)】一元二次方程的應(yīng)用祁東縣靈官鎮(zhèn)大同市中學(xué)龍貴華【教學(xué)目標(biāo)】?1、使學(xué)生會(huì)用列一元二次方程的方法解決有關(guān)商品的銷售問題。?2、正確解方程并能根據(jù)具體問題的實(shí)際意義,檢驗(yàn)結(jié)果的合理性。?3、通過用一元二次方程解決身邊的實(shí)際問題,體會(huì)數(shù)學(xué)知識(shí)應(yīng)用的價(jià)值,培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)的意識(shí)?!窘虒W(xué)重點(diǎn)】●學(xué)
2024-11-22 02:57
【總結(jié)】一元二次方程合作學(xué)習(xí):列出下列問題中關(guān)于未知數(shù)x的方程:(1)把面積為4平方米的一張紙分割成如圖所示的正方形和長(zhǎng)方形兩個(gè)部分,求正方形的邊長(zhǎng).設(shè)正方形的邊長(zhǎng)為x,可列出方程為______________xxx3(2)據(jù)國(guó)家統(tǒng)計(jì)局公布的數(shù)據(jù),浙江省2020年全省實(shí)現(xiàn)生產(chǎn)總值6700億元,2020年生產(chǎn)總值達(dá)920
【總結(jié)】綠苑小區(qū)住宅設(shè)計(jì),準(zhǔn)備在每?jī)纱睒欠恐g,開辟面積為900平方米的一塊長(zhǎng)方形綠地,并且長(zhǎng)比寬多10米,那么綠地的長(zhǎng)和寬各為多少?設(shè):長(zhǎng)方形綠地的寬為x米,xx+10x(x+10)=900x2+10x-900=0由題意得:整理得:學(xué)校圖書館去年年底有圖書5萬(wàn)冊(cè),預(yù)計(jì)到明年年底增加到.求這兩年的年
2024-11-22 01:29