【總結(jié)】l:x+y-3=0,橢圓x24+y2=1,則直線與橢圓的位置關(guān)系是()A.相交B.相切C.相離D.相切或相交解析:選x+y-3=0代入x24+y2=1,得x24+(3-x)2=1,即5x2-24x+32=0.
2024-12-05 06:41
【總結(jié)】6x2+y2=6的長(zhǎng)軸端點(diǎn)坐標(biāo)為()A.(-1,0),(1,0)B.(-6,0),(6,0)C.(-6,0),(6,0)D.(0,-6),(0,6)解析:選y26+x2=1,∴a2=6,且焦點(diǎn)在y軸上.∴長(zhǎng)軸端點(diǎn)坐標(biāo)為(0,-6),
【總結(jié)】橢圓的幾何性質(zhì)1課題第1課時(shí)計(jì)劃上課日期:教學(xué)目標(biāo)[知識(shí)與技能1.掌握橢圓的基本幾何性質(zhì):范圍、對(duì)稱性、頂點(diǎn)、長(zhǎng)軸、短軸.2.感受如何運(yùn)用方程研究曲線的幾何性質(zhì)過(guò)程與方法情感態(tài)度與價(jià)值觀教學(xué)重難點(diǎn)橢圓的幾何性質(zhì)——范圍、對(duì)稱性、頂點(diǎn)教學(xué)流程\內(nèi)容\板
2024-11-20 00:30
【總結(jié)】求曲線的方程oyxoyx復(fù)習(xí).答:一般地,在直角坐標(biāo)系中,如果某曲線C上的點(diǎn)與一個(gè)二元方程F(x,y)=0的實(shí)數(shù)解建立了如下的關(guān)系:(1)曲線C上的點(diǎn)的坐標(biāo)都是方程F(x,y)=0的解,(2)以方程F(x,y)=0的解為坐標(biāo)的點(diǎn)都是曲線C上的點(diǎn)
2024-11-18 01:22
【總結(jié)】曲線和方程——(1)、求第一、三象限里兩軸間夾角平分線的坐標(biāo)滿足的關(guān)系第一、三象限角平分線??點(diǎn)的橫坐標(biāo)與縱坐標(biāo)相等x=y(或x-y=0)l得出關(guān)系:lx-y=0xy0(1)l上點(diǎn)的坐標(biāo)都是方程x-y=0的解(2)以方程x-y=0的解為坐標(biāo)的點(diǎn)都在上l曲
2024-11-18 15:25
【總結(jié)】第二章圓錐曲線與方程2.2橢圓2.橢圓及其標(biāo)準(zhǔn)方程,標(biāo)準(zhǔn)方程的兩種形式及推導(dǎo)過(guò)程.2.會(huì)根據(jù)條件確定橢圓的標(biāo)準(zhǔn)方程,掌握用待定系數(shù)法求橢圓的標(biāo)準(zhǔn)方程.目標(biāo)了然于胸,讓講臺(tái)見(jiàn)證您的高瞻遠(yuǎn)矚新知視界1.橢圓的定義平面內(nèi)與兩個(gè)定點(diǎn)F1,F(xiàn)2的距離之和等于常數(shù)(大于|F1
2024-11-21 23:17
【總結(jié)】《橢圓的幾何性質(zhì)》教學(xué)目標(biāo)?知識(shí)與技能目標(biāo)?了解用方程的方法研究圖形的對(duì)稱性;理解橢圓的范圍、對(duì)稱性及對(duì)稱軸,對(duì)稱中心、離心率、頂點(diǎn)的概念;掌握橢圓的標(biāo)準(zhǔn)方程、會(huì)用橢圓的定義解決實(shí)際問(wèn)題;通過(guò)例題了解橢圓的第二定義,準(zhǔn)線及焦半徑的概念,利用信息技術(shù)初步了解橢圓的第二定義.?過(guò)程與方法目標(biāo)?(1)復(fù)習(xí)與引入過(guò)程
2025-07-24 18:14
【總結(jié)】圓的簡(jiǎn)單幾何性質(zhì)(三)【學(xué)習(xí)目標(biāo)】1.掌握橢圓的第二定義;2.能利用橢圓的第二定義解決相關(guān)的問(wèn)題.【典型例題】例1.點(diǎn)(,)Mxy與定點(diǎn)(4,0)F的距離和它到直線25:4lx?的距離之比是常數(shù)45,求點(diǎn)M的軌跡,并說(shuō)明軌跡是什么圖形.思考:
2024-11-19 19:35
【總結(jié)】橢圓的方程與性質(zhì)一、選擇題1.下列命題是真命題的是()A.到兩定點(diǎn)距離之和為常數(shù)的點(diǎn)的軌跡是橢圓B.到定直線cax2?和定點(diǎn)F(c,0)的距離之比為ac的點(diǎn)的軌跡是橢圓C.到定點(diǎn)F(-c,0)和定直線cax2??的距離之比為ac(ac0)的點(diǎn)的軌跡是左半個(gè)橢圓
2024-11-12 02:00
【總結(jié)】橢圓及其簡(jiǎn)單幾何性質(zhì)(1)【學(xué)習(xí)目標(biāo)】1.根據(jù)橢圓的方程研究曲線的幾何性質(zhì),并正確地畫(huà)出它的圖形;2.根據(jù)幾何條件求出曲線方程,并利用曲線的方程研究它的性質(zhì),畫(huà)圖.【重點(diǎn)難點(diǎn)】橢圓的幾何性質(zhì)借助曲線方程研究橢圓性質(zhì)?!緦W(xué)習(xí)過(guò)程】一、自主預(yù)習(xí)(預(yù)習(xí)教材理P43~P46,文P37~P40找出疑惑之處
2024-12-05 01:56
【總結(jié)】B'C'CBA251213A'xOy雙曲線的簡(jiǎn)單幾何性質(zhì)(一)【學(xué)習(xí)目標(biāo)】掌握雙曲線的范圍、對(duì)稱性、頂點(diǎn)、漸近線、離心率等幾何性質(zhì).【自主學(xué)習(xí)】雙曲線的簡(jiǎn)單幾何性質(zhì):1.范圍、對(duì)稱性2.頂點(diǎn)頂點(diǎn):??0,),0,(21aAaA?特殊點(diǎn):
【總結(jié)】拋物線的簡(jiǎn)單幾何性質(zhì)【學(xué)習(xí)目標(biāo)】掌握拋物線的范圍、對(duì)稱性、頂點(diǎn)、離心率等幾何性質(zhì).【自主學(xué)習(xí)】根據(jù)拋物線的標(biāo)準(zhǔn)方程)0(22??ppxy,研究它的幾何性質(zhì):1.范圍2.對(duì)稱性3.頂點(diǎn)4.離心率拋物線上的點(diǎn)M與焦點(diǎn)的距離和它到準(zhǔn)線的距離的比,叫做拋物線的離心率,用e表示.由拋物線的定義可知,
2024-12-05 06:40
【總結(jié)】§1.2橢圓的簡(jiǎn)單性質(zhì)設(shè)計(jì)人:趙軍偉審定:數(shù)學(xué)備課組【學(xué)習(xí)目標(biāo)】;理解橢圓的范圍、對(duì)稱性及對(duì)稱軸,對(duì)稱中心、離心率、頂點(diǎn)的概念;、會(huì)用橢圓的定義解決實(shí)際問(wèn)題;利用信息技術(shù)初步了解橢圓的第二定義.【學(xué)習(xí)重點(diǎn)】理解橢圓的范圍、對(duì)稱性及對(duì)稱軸,對(duì)稱中心、離心率、頂點(diǎn)的概念;【學(xué)習(xí)難點(diǎn)】掌握橢圓的標(biāo)
2024-12-08 17:46
【總結(jié)】定義與方程罐車的橫截面數(shù)學(xué)實(shí)驗(yàn)?[1]取一條細(xì)繩,?[2]把它的兩端固定在板上的兩點(diǎn)F1、F2?[3]用鉛筆尖(M)把細(xì)繩拉緊,在板上慢慢移動(dòng)看看畫(huà)出的圖形F1F2M觀察做圖過(guò)程:[1]繩長(zhǎng)應(yīng)當(dāng)大于F1、F2之間的距離。[2]
2024-11-17 20:06
【總結(jié)】1橢圓的標(biāo)準(zhǔn)方程橢圓的簡(jiǎn)單幾何性質(zhì)(二)()xyabab222210????圖形12yoFFMx焦點(diǎn)F1(-c,0),F(xiàn)2(c,0)()cab22??范圍,??≤≤≤≤axabyb頂點(diǎn)????(,)(,)AaAa12
2025-07-24 04:32