【總結(jié)】興福中學(xué)初二數(shù)學(xué)下冊周末作業(yè)(日期:—)1.分別以下列四組數(shù)為一個三角形的邊長:(1)3,4,5;(2)5,12,13;(3)8,15,17;(4)4,5,6.其中能構(gòu)成直角三角形的有()2.三角形的三邊長分別為a2+b2、2ab、a2-b2(a、b都是正整數(shù)),則這個三角形是()A.直角三角形B.鈍角三角形C.銳角三角形
2025-03-24 13:00
【總結(jié)】勾股定理習(xí)題集一、選擇題(本大題共13小題,)1.下列命題中,是假命題的是(??)A.在△ABC中,若∠B=∠C-∠A,則△ABC是直角三角形B.在△ABC中,若a2=(b+c)?(b-c),則△ABC是直角三角形C.在△ABC中,若∠A:∠B:∠C=3:4:5,則△ABC是直角三角形D.在△ABC中,若a:b:c=3:4:5,則△ABC是直角三角
2025-06-22 04:05
【總結(jié)】勾股定理課時練(1)1.在直角三角形ABC中,斜邊AB=1,則AB的值是()-2-4所示,有一個形狀為直角梯形的零件ABCD,AD∥BC,斜腰DC的長為10cm,∠D=120°,則該零件另一腰AB的長是______cm(結(jié)果不取近似值).3.直角三角形兩直角邊長分別為5和12,則它斜邊上的高為_______.,猶如
2025-06-23 05:28
【總結(jié)】勾股定理??剂?xí)題勾股定理的直接應(yīng)用:1、在Rt△ABC中,∠C=90°,a=12,b=16,則c的長為()A:26B:18C:20D:212、在平面直角坐標系中,已知點P的坐標是(3,4),則OP的長為()A:3B:4
【總結(jié)】勾股定理一、勾股定理及證明二、勾股定理的逆定理三、勾股定理的應(yīng)用一、勾股定理及證明1.【易】(初二數(shù)學(xué)下期末復(fù)習(xí))在中,,、、分別表示、、的對邊,則下列各式中,不正確的是( )A. B. C. D.【答案】D2.【易】(2010實驗初二上期中)下列說法正確的是( ?。〢.若、、是的三邊,則B.若、、是
2025-06-28 04:49
【總結(jié)】....勾股定理課時練(1)1.在直角三角形ABC中,斜邊AB=1,則AB的值是(),AD∥BC,斜腰DC的長為10cm,∠D=120°,則該零件另一腰AB的長是______cm(結(jié)果不取近似值).3.直角三角形兩直角邊
2025-06-22 07:28
【總結(jié)】《勾股定理》典型例題分析一、知識要點:1、勾股定理勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方。也就是說:如果直角三角形的兩直角邊為a、b,斜邊為c,那么a2+b2=c2。公式的變形:a2=c2-b2,b2=c2-a2。2、勾股定理的逆定理如果三角形ABC的三邊長分別是a,b,c,且滿足a2+b2=c2,那么三角形ABC是直角三角形。這個定
2025-03-24 03:56
【總結(jié)】勾股定理典型分類練習(xí)題題型一:直接考查勾股定理,.⑴已知,.求的長2已知,,求的長變式1:已知,△ABC中,AB=17cm,BC=16cm,BC邊上的中線AD=15cm,試說明△ABC是等腰三角形。變式2:已知△ABC的三邊a、b、c,且a+b=17,ab=60,c=13,△ABC是否是直角三角形?
2025-03-24 12:59
2025-03-24 12:58
2025-06-22 07:39
【總結(jié)】勾股定理的應(yīng)用舉例練習(xí)題1、如圖所示,已知在三角形紙片ABC中,BC=3,AB=6,∠BCA=90°.在AC上取一點E,以BE為折痕,使AB的一部分與BC重合,A與BC延長線上的點D重合,則DE的長度為( ?。〢.6?????B.3
【總結(jié)】《勾股定理》典型例題分析一、知識要點:1、勾股定理勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方。也就是說:如果直角三角形的兩直角邊為a、b,斜邊為c,那么a2+b2=c2。公式的變形:a2=c2-b2,b2=c2-a2。2、勾股定理的逆定理如果三角形ABC的三邊長分別是a,b,c,且滿足a2+b2=c2,那么三角形ABC是直角三角形。這
【總結(jié)】《勾股定理》典型例題分析二、考點剖析考點一:利用勾股定理求面積1、求陰影部分面積:(1)陰影部分是正方形;(2)陰影部分是長方形;(3)陰影部分是半圓.2.如圖,以Rt△ABC的三邊為直徑分別向外作三個半圓,試探索三個半圓的面積之