【總結(jié)】自主預(yù)習(xí)課堂互動(dòng)課堂達(dá)標(biāo)正弦函數(shù)、余弦函數(shù)的圖象目標(biāo)定位y=sinx,y=cosx的圖象;“五點(diǎn)法”畫正弦函數(shù)、余弦函數(shù)的圖象;y=cosx的圖象與y=sinx的圖象之間的聯(lián)系.自主預(yù)習(xí)課堂互動(dòng)課堂達(dá)標(biāo)、余弦函數(shù)自主預(yù)習(xí)實(shí)數(shù)集與角的集合之間可以建立一
2024-11-30 11:29
【總結(jié)】課題:正切函數(shù)的圖像和性質(zhì)執(zhí)教者:陳啟迪班級(jí):普一(1)班正切函數(shù)的圖像和性質(zhì)用正切線作正切函數(shù)圖像:*正切函數(shù)是否為周期函數(shù)?∴是周期函數(shù),是它的一個(gè)周期.利用正切線畫出函數(shù),的圖像:*回顧:前幾節(jié)課我們是如何研究正、余弦函數(shù)的圖象
2024-11-09 13:04
【總結(jié)】本資料來源2012屆高考數(shù)學(xué)難點(diǎn)函數(shù)圖象與圖象變換函數(shù)的圖象與性質(zhì)是高考考查的重點(diǎn)內(nèi)容之一,它是研究和記憶函數(shù)性質(zhì)的直觀工具,利用它的直觀性解題,可以起到化繁為簡、,考生要掌握繪制函數(shù)圖象的一般方法,掌握函數(shù)圖象變化的一般規(guī)律,能利用函數(shù)的圖象研究函數(shù)的性質(zhì).●難點(diǎn)磁場(chǎng)(★★★★★)已知函數(shù)f(x)=ax3+bx2+cx+d的圖象如圖,求b的范圍.●案例探究[例1]對(duì)
2025-06-18 21:49
【總結(jié)】要點(diǎn)·疑點(diǎn)·考點(diǎn)課前熱身能力·思維·方法延伸·拓展誤解分析第6課時(shí)函數(shù)的圖象要點(diǎn)·疑點(diǎn)·考點(diǎn)在平面直角坐標(biāo)系中,以函數(shù)y=f(x)中的x為橫坐標(biāo),函數(shù)值y為縱坐標(biāo)的點(diǎn)(x,y)的
2024-10-18 11:50
【總結(jié)】宇軒圖書下一頁上一頁末頁目錄首頁考點(diǎn)知識(shí)精講宇軒圖書下一頁上一頁末頁目錄首頁考點(diǎn)訓(xùn)練中考典例精析舉一反三考點(diǎn)知識(shí)精講宇軒圖書下一頁上一
2025-01-14 08:33
【總結(jié)】函數(shù)的圖象授課教師:姜宇)sin(????xAyxysin???回顧:對(duì)于函數(shù),函數(shù),
2024-11-22 00:20
【總結(jié)】初中數(shù)學(xué)九年級(jí)上冊(cè)(蘇科版)鹽城市北蔣實(shí)驗(yàn)學(xué)校九年級(jí)數(shù)學(xué)備課組(復(fù)習(xí))課前導(dǎo)學(xué),形如(a,b,c是常數(shù),a≠0)的函數(shù),叫做二次函數(shù)。其中,x是自變量,a,b,c分別是函數(shù)解析式的二次項(xiàng)系數(shù),一次項(xiàng)系數(shù)和常數(shù)項(xiàng).y=ax2+bx+cy=a(x+h)2+k的圖像和性質(zhì)
2024-10-19 09:33
【總結(jié)】專題復(fù)習(xí):二次函數(shù)的圖象與性質(zhì)復(fù)習(xí)目標(biāo):?1、復(fù)習(xí)掌握二次函數(shù)的圖象與性質(zhì)。?2、掌握二次函數(shù)與一元二次方程及一元二次不等式的關(guān)系。?3、解決二次函數(shù)與一次函數(shù)圖象的綜合問題。規(guī)律小結(jié)b2-4ac的符號(hào)——看拋物線與x軸的交點(diǎn):1)若拋物線與x軸有兩個(gè)不同的交點(diǎn):則b2-4a
2024-11-21 03:59
【總結(jié)】第13講┃二次函數(shù)的圖象與性質(zhì)第13講二次函數(shù)的圖象與性質(zhì)考點(diǎn)1二次函數(shù)的定義┃考點(diǎn)自主梳理與熱身反饋┃第13講┃二次函數(shù)的圖象與性質(zhì)二次函數(shù)的定義形如y=ax2+bx+c(a,b,c都是常數(shù),且a______)二次函數(shù)的自變量的取
2024-11-22 04:09
【總結(jié)】三角函數(shù)的圖象與性質(zhì)zx``xk、余弦函數(shù)的圖象x,對(duì)應(yīng)的正弦值(sinx)、余弦值(cosx)是否存在?是否惟一?問題提出,角α的正弦線、余弦線分別是什么?P(x,y)OxyMsinα=MPcosα=OM,要直觀、全面了解正、余弦函數(shù)的基本特性,我們應(yīng)從哪個(gè)方面人
2024-11-30 12:35
【總結(jié)】第十節(jié)函數(shù)圖像基礎(chǔ)梳理1.函數(shù)作圖的最基本途徑:描點(diǎn)法描點(diǎn)法作圖象分三步:________、________、________.即根據(jù)函數(shù)的定義域適當(dāng)取值.與函數(shù)值對(duì)應(yīng)列出表格,而后在平面直角坐標(biāo)系中描出相關(guān)點(diǎn),再用平滑的曲線順次連結(jié),從而作出圖象.2.圖象的變換(1)平移變換①水平平移:y=f(x±
2024-11-09 01:26
2024-11-12 16:46
【總結(jié)】2、如果在某一變化過程中,有兩個(gè)變量,如x和y,對(duì)于x的每一個(gè)值,y都有唯一的值與之對(duì)應(yīng),我們就說x是自變量,y是因變量,此時(shí)也稱y是x的函數(shù).3、函數(shù)關(guān)系的三種表示方法:解析法、列表法、圖象法1、在某一變化過程中,可以取不同數(shù)值的量,叫做變量.還有一種量,它的取值始終保持不變,稱之為
2024-11-21 00:59
【總結(jié)】二次函數(shù)的圖像張梅榮比較函數(shù)與的圖象想一想駛向勝利的彼岸?(2)在同一坐標(biāo)系中作出二次函數(shù)y=3x2和y=3(x-1)2的圖象.?⑴完成下表,并比較3x2和3(x-1)2的值,它們之間有什么關(guān)系?x-3-2-10123423x
2024-11-24 14:10
【總結(jié)】八年級(jí)下冊(cè)函數(shù)的圖象(1)?本課是在學(xué)習(xí)函數(shù)概念的基礎(chǔ)上,進(jìn)一步討論函數(shù)的圖象,學(xué)習(xí)從函數(shù)圖象上獲取信息,初步討論函數(shù)的變化規(guī)律和變化趨勢(shì).課件說明?學(xué)習(xí)目標(biāo):1.了解函數(shù)圖象的意義;2.會(huì)觀察函數(shù)圖象獲取信息,根據(jù)圖象初步分析函數(shù)的對(duì)應(yīng)關(guān)系和變化規(guī)律;3.經(jīng)歷畫函數(shù)圖象的過程,
2024-11-24 21:18