【正文】
不奮斗就是每天都很容易,可一年一年越來越難。 for people in poor countries,it’s less than one ton. It’s an average of about five tons for everyone on the planet.And, somehow, we have to make changes that will bring that down to zero. It’s been constantly going up. It’s only various economic changes that have been flattened it at all, so we have to go from rapid rising to falling, and falling all the way to zero. This equation has four factors, a little bit of multiplication: So, you’re got a thing on the left,CO2,that you want to get to zero,and that’s going to be based on the number of people,the services each person’s using on average,the energy on average for each service, and the CO2 being put out per unit of energy. So ,let’s look at each one of these and see how we get this down to zero. Probably, one of this number is going to have to get pretty near to zero. Now that’s back from high school algebra,but let’s take a look. First, we’ve got population. The world today has billion people. That’s headed up to about nine billion. Now ,if we do a really great job on new vaccines, health care, reproductive health services, we could lower that by ,perhaps, 10 or 15 percent, but there we see an increase of about . The second factor is the services we use. This enpass everything: the foot we eat, clothing, TV,heating. These are very good things:getting rid of poverty means providing these services to almost everyone on the planet. And it’s a great thing for this number to go up. In the rich world,perhaps the top one billion,we probably could cut back and use less,but every year, this numer, on average,is going to go up,and so, over all,that will more than double,the services delivered per person. Here we have a very basic service: Do you have lighting in your house to be able to read your homework? And, in fact,these kids don’t,so they’re going out and reading their school work under the street lamps. Now, efficiency,E,the energy for each service,here finally we have some good news. We have something that’s not going up. Through various inventions and new ways of doing lighting through different types of car,different ways of buildingthere are a lot of services where you can bring the energy for that service down quite substantially. There are other services like how we make fertilizer,or how we do air transport,where the rooms for improvement are far ,far less. And so,overall here,if we’re optimistic,we may get a reduction of a factor of three to even,perhaps, a factor of six. But for these first three factors now,we’ve gone from 26billion to, at best,may 13 billion tons, and that just won’t cut it. So let’s look at this fourth factorthis is going to be a key oneand this is the amount of CO2 put out per each unit of energy. And so the question is:can you actually get that to zero? If you burn coal,no. If you burn natural gas,no. Almost every way make electricity today,except for the emerging renewables and nuclear,puts out CO2. And so,what we’re going to have to do at a global scale,is create a new system.And so,we need energy miracles. Now, when I use the term “miracle,” I don’t mean something that’s impossible. The microprocessor is a miracle. The personal puter is a miracle. The Internet and its service