freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

多電子原子的結(jié)構(gòu)-wenkub.com

2025-06-14 19:29 本頁(yè)面
   

【正文】 ( 1 ) ( 1 ) (2 ) (2 ) ( 3 ) ( 3 ) ( ) ( )NN? ? ? ? ? ? ? ? ? ? ?? ? ???( 3) Slater行列式 對(duì)基態(tài) He(1s2)原子 1 1 1( 1 ) ( 1 ) ( 2 ) ( 2 )ss? ? ? ? ??2 1 1( 2 ) ( 2 ) ( 1 ) ( 1 )ss? ? ? ? ??1 1 1 1( 1 , 2 ) ( 1 ) ( 1 ) ( 2 ) ( 2 ) ( 2 ) ( 2 ) ( 1 ) ( 1 )s s s s? ? ? ? ? ? ? ? ???全同粒子與 Pauli 原理 基態(tài) He 原子 Slater行列式 11 1122( 1 ) ( 1 ) ( 2 ) ( 2 ) ( 1 ) ( 2 )11( 1 , 2 )( 1 ) ( 1 ) ( 2 ) ( 2 ) ( 1 ) ( 2 )22ss? ? ? ? ???? ? ? ? ????多電子體系的 Slater行列式為 1 1 12 2 2( 1 ) ( 2 ) ( )( 1 ) ( 2 ) ( )1( 1 , 2 , , ) !( 1 ) ( 2 ) ( )n n nnnnnn? ? ?? ? ??? ? ??全同粒子與 Pauli 原理 每一列對(duì)應(yīng)一個(gè)自旋 軌道 , 每一行對(duì)應(yīng)一個(gè)電子;反之亦可 。 ?( 1) 微觀全同粒子的概念 全同粒子與 Pauli 原理 自旋量子數(shù)為半整數(shù)的 (電子 ,質(zhì)子 ,中子等 )全同粒子 ,體系的完全波函數(shù)對(duì)交換任意兩粒子的坐標(biāo)必須是反對(duì)稱性的 。 ( , , ) ( )ssn l m m n l m mrr? ? ? ? ? ? ? ? ??完全波函數(shù) 空間波函數(shù) 自旋波函數(shù) 電子自旋 質(zhì)量 、 電荷 、 自旋等固有性質(zhì)完全相同的粒子稱為全同粒子 。dinger方程為: 電子自旋與 pauli原理 電子自旋 斯特恩 蓋拉赫( SternGerlach)實(shí)驗(yàn) 堿金屬原子束通過(guò)一個(gè)不均勻磁場(chǎng),原子束發(fā)生偏轉(zhuǎn),在照相底片上出現(xiàn)兩條分立的譜線。 將此近似波函數(shù) ?1(1), ?2(1), … ,?n(1)代入 , 又得一組近似波函數(shù) ?1(2), ?2(2), … ,?n(2) , 及對(duì)應(yīng)的的能量 E1(2), E2(2), … ,En(2) 。dinger方程為 : 21 ( , , ) ( , , )2Z r E rr ? ? ? ? ? ???? ? ? ?????類氫體系的 Schr246。 單電子近似 (軌道近似 ) 112122( , ) ( ) ( )( , ) ( ) ( )( , ) 1 ( 1 ) ( 1 ) ( ) ( )f x y x y x y x yf x y xf x yf x ff x fyyyy x f x f y?? ? ? ? ? ? ?? ? ???分 離 變 量 :例 如 :不可 以 分 離可 以 分 離( )H a r t r e e F o c k???自 洽 場(chǎng) 法單 電 子 近 似中 心 力 場(chǎng) 法12 12( , )( , ) ( ) ( ) ( )) (f x y f x ff x y f x f y y?? , 單 電 子 近 似 數(shù) 學(xué) 上 表 示 為 :中心場(chǎng)法是將原子中其它電子對(duì)第 i個(gè)的排斥作用看出是球?qū)ΨQ的。 原子軌道 ?(i)對(duì)應(yīng)的能量為: 零級(jí)近似 忽略電子間相互作用時(shí) , He的能量為: 2211( 1 ) ( 2) 2 ( ) 2 e VssE E E? ? ? ? ? ? ? ? ? ?光電子能譜實(shí)驗(yàn)測(cè)得電離能為: 122 4 . 6 e V , 5 4 . 4 e VII?? 12 7 9 .0 e VII??由 Koopman定理預(yù)測(cè) , He原子的總能量應(yīng)為: 7 9 0 e VE ?? .電子間的排斥能: 7 9 . 0 ( 1 0 8 . 8 ) 2 9 . 8 e V? ? ? ? 顯然 , 電子間的 排斥能 是 不能忽略 的 。忽略電子間的相互作用 將一個(gè)包含 n個(gè)電子的 Hamilton拆分成 n單電子體系 Hamilton, 每個(gè)單電子 Schr246。dinger方程 , 基于不同的物理模型 , 提出了不同的近似分拆方法 。 4 12 1 1 1eh mea u a u a u a u??? ? ? ? ?原子單位 多電子原子的 Schr246。dinger方程及其近似解 He原子 Hamilton算符用原子單位表示為: 任意多電子原子 Hamilton算符 20H a m i l t o n 4ije
點(diǎn)擊復(fù)制文檔內(nèi)容
教學(xué)教案相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖片鄂ICP備17016276號(hào)-1