【總結(jié)】歸納:已知一個銳角,根據(jù)∠A+∠B=90°,可以求另一銳角。∠A=90°-∠B;∠B=90°-∠A;問題一:已知Rt△ABC中,∠C=90°,設∠A的對邊為a,∠B的對邊為b,∠C的對邊為c。ACBab
2024-11-22 01:20
【總結(jié)】導入新課講授新課當堂練習課堂小結(jié)解直角三角形及其應用第二十八章銳角三角函數(shù)解直角三角形學習目標1.了解并掌握解直角三角形的概念;2.理解直角三角形中的五個元素之間的聯(lián)系.(重點)3.學會解直角三角形.(難點)導入新課ACBcba(1)三邊之間的關系:a
2025-06-19 07:11
【總結(jié)】第二十八章銳角三角函數(shù)解直角三角形及其應用第1課時解直角三角形數(shù)學九年級下冊配人教版課前預習A.解直角三角形:一個直角三角形中除了直角還有__個元素,即兩條________、一條____邊和______銳角,已知其中___個元素(至少有一條邊),求出其他三個量的過程叫做
2025-06-15 12:04
【總結(jié)】 解直角三角形及其應用 解直角三角形學前溫故新課早知在Rt△ABC中,∠C=90°,∠A,∠B,∠C所對的邊分別為a,b,c,則a,b,c,∠A,∠B這五個元素間的等量關系:邊角之間的關系sinA= ;cosA= ;tanA= ;?sinB= ;cosB= ;t
2025-06-19 12:03
【總結(jié)】解直角三角形(2)在直角三角形中,除直角外,由已知兩元素求其余未知元素的過程叫解直角三角形.(1)三邊之間的關系:a2+b2=c2(勾股定理);(2)兩銳角之間的關系:∠A+∠B=90o;(3)邊角之間的關系:ACBabc
2024-11-21 04:10
【總結(jié)】在RtΔABC中,若∠C=900,問題1.兩銳角∠A與∠B有什么關系?答:∠A+∠B=900.問題2.三邊a、b、c的關系如何?答:a2+b2=c2.問題3.∠B與邊的關系是
2024-11-10 01:51
【總結(jié)】解直角三角形(2)(2)兩銳角之間的關系∠A+∠B=90°(3)邊角之間的關系caAA???斜邊的對邊sincbBB???斜邊的對邊sincbAA???斜邊的鄰邊coscaBB???斜邊的鄰邊cosbaAAA????的鄰邊的對邊t
2025-06-18 05:07
【總結(jié)】九年級數(shù)學上冊(HS)
2025-06-13 12:12
【總結(jié)】解直角三角形(教學設計一)人教版數(shù)學九年級下冊;掌握直角三角形中五個元素之間的關系,掌握解直角三角形的概念.(重點):能綜合利用勾股定理、直角三角形的兩個銳角互余及銳角三角函數(shù)等知識解直角三角形.(重點、難點):通過對直角三角形中邊角關系的分析、歸納及應用,滲透數(shù)形結(jié)合思想,進一步發(fā)展幾何直觀.學習目
2025-06-12 01:22
【總結(jié)】(A)0°<∠A<30°(B)30°<∠A<90°(C)0°<∠A<60°(D)60°<∠A<901.當∠A為銳角,且tanA的值大于時,∠A()B2.當∠A為銳角,且tanA的值小于時,∠
2024-11-21 00:14
【總結(jié)】導入新課講授新課當堂練習課堂小結(jié)銳角三角函數(shù)第二十八章銳角三角函數(shù)第1課時解直角三角形的簡單應用九年級數(shù)學下(RJ)教學課件學習目標1.鞏固解直角三角形相關知識.(重點)2.能從實際問題中構(gòu)造直角三角形,從而把實際問題轉(zhuǎn)化為解直角三角形的問題
2025-06-17 12:51
【總結(jié)】解直角三角形(教學設計二)人教版數(shù)學九年級下冊識與技能:理解直角三角形中五個元素的關系,會運用勾股定理,直角三角形的兩個銳角互余及銳角三角函數(shù)解直角三角形.(重點)程與方法:通過綜合運用勾股定理,直角三角形的兩個銳角互余及銳角三角函數(shù)解直角三角形,逐步培養(yǎng)學生分析問題、解決問題的能力.(難點)、態(tài)度與價值觀:培
【總結(jié)】銳角三角形直角三角形鈍角三角形——有一個角是鈍角。三角形按角的分類——三個角都是銳角?!幸粋€角是直角。你能舉出生活中用到直角三角形的例子嗎?直角三角形用Rt△表示,如圖記作Rt△ABC,ACB直角邊斜邊直角邊∠C=Rt∠直角三角形
2025-08-01 14:23