【正文】
linearity problems are solved by increasing the size of the circuit. An example of this can be seen in D/A and A/D converters where the performance of the converter is very much proportional to the size of the circuit.6. Noise in circuits implemented in smaller technologies can cause problems for analog designers. This is usually worsened by the fact that there is usually a large and fast digital circuit that is generating much of the noise. The smaller operating voltage range works against the designer as well. Signal to noise ratio in the analog circuit gets worse because the signal levels go down but the noise levels may actually go up.7. Analog circuit modeling in smaller geometries is problematic. 蘭 州 理 工 大 學(xué) 畢 業(yè) 設(shè) 計(jì)Much of this is due to the lower levels of predictability and the nature of the parasitic. Some of it is due to the maturity of the technology as well. This, of course, will improve as the technology develops.Because of these items listed above it is important to understand that as the process geometry shrinks, the analog actually gets bigger, and definitely harder. This has to be pensated by increasing the sizes of the transistors, capacitors and resistors used. Moving to smaller technologies should only be done when the performance requirements of the application demand it. For most mixedsignal SoC devices this will be driven by the digital gate count and the amount of memory in the design. Only when there is significant digital content should you consider smaller technologies.ConclusionThe latest generation of mixedsignal process technologies has moved well into the deep submicron world where adding digital circuits and cores to an analog ASIC has bee a costeffective approach. With the addition of digital process capability and the digital processing horsepower that bees available, many analog functions are being converted to digital signals earlier in the signal path. The advantage of this approach is that digital filters and digital control elements are not sensitive to drift inaccuracies caused by aging, process changes or temperature changes. The result is a much more robust design than an analogonly approach. 中文譯文:蘭 州 理 工 大 學(xué) 畢 業(yè) 設(shè) 計(jì)橋接模擬與數(shù)字世界之間的鴻溝大多數(shù)應(yīng)用程序要求模擬和數(shù)字功能的并存,把此功能結(jié)合在單一芯片上的好處是很明顯的。然而,這樣的混合信號(hào)集成也向人們提出了重大挑戰(zhàn)。此外,數(shù)字和模擬功能往往以不同的速度進(jìn)行發(fā)展,但混合信號(hào)在如工業(yè),汽車和醫(yī)療行業(yè)的解決方案在關(guān)鍵時(shí)期必須保持是能用的。最新的混合信號(hào)半導(dǎo)體工藝正在著力解決這些問題,本文將著重于當(dāng)具體指定集成混合信號(hào)解決方案時(shí)設(shè)計(jì)者應(yīng)考慮的一些問題。在現(xiàn)實(shí)世界中混合信號(hào)的解決方案系統(tǒng)設(shè)計(jì)人員經(jīng)常從一個(gè)給定設(shè)計(jì)的模擬區(qū)域中進(jìn)行數(shù)字區(qū)域的分區(qū),這樣做有多種原因:這兩種技術(shù)混合組件的可用性,數(shù)字化設(shè)計(jì)的復(fù)雜性或作為標(biāo)準(zhǔn)產(chǎn)品的純數(shù)字處理部分的存在。在集成電路里配置模擬器件確實(shí)能讓系統(tǒng)設(shè)計(jì)師降低整個(gè)模塊的成本。此集成方法在諸如信或計(jì)算機(jī)等先進(jìn)領(lǐng)域通常是難以實(shí)現(xiàn)的,但對(duì)于更成熟的或傳統(tǒng)的市場(chǎng),如汽車,醫(yī)療和工業(yè)是有實(shí)際意義的。對(duì)于這些成熟市場(chǎng)的大部分應(yīng)用,數(shù)字化功能研究者正在尋找曾是純模擬設(shè)計(jì)的方法。添加數(shù)字功能到模擬設(shè)計(jì),部分上幫助了開發(fā)新的工藝技術(shù),該工藝可以處理短信道,快速轉(zhuǎn)換數(shù)字晶體管和高電壓模擬晶體管。例如,AMI 半導(dǎo)體公司最新的混合信號(hào)技術(shù)提供了在相同的設(shè)計(jì)平臺(tái)上的數(shù)字和模擬集成功能。 I3T 技術(shù)系列是基于 微米的補(bǔ)充金屬氧化物半導(dǎo)體(晶體管型) 的。有些人認(rèn)為從一個(gè)純粹的數(shù)字設(shè)計(jì)師的角度來看,這項(xiàng)技術(shù)已經(jīng)過時(shí),但它卻是處在汽車,工業(yè)和醫(yī)療行業(yè)的最前沿的技術(shù)。這種可選特性使真正的片上系統(tǒng)的設(shè)計(jì)能實(shí)現(xiàn)以下功能,包括高電壓接口可達(dá) 80伏,微處理性能可達(dá) 32 位,無線性能可達(dá) 千兆/ 赫茲,以及復(fù)雜邏輯設(shè)計(jì)可達(dá)每平方 15 000 個(gè)門電路。除了這些功能之外,使非易失性存儲(chǔ)器的融合成為可能:電可擦可編程只讀存儲(chǔ)器可達(dá) 4 千字節(jié),快閃記憶體高達(dá)半兆位或生產(chǎn)一次性編程(OTP)的應(yīng)用程序。能夠在一個(gè)芯片上集成所有這些功能使客戶有可能免受獨(dú)立非易失性存儲(chǔ)器市場(chǎng)過時(shí)的影響,該市場(chǎng)或多或少會(huì)受電腦市場(chǎng)的驅(qū)動(dòng)。例如,當(dāng)我們考慮汽車原始設(shè)備制造商的重新排位模塊的成本時(shí),這樣做的好處是非常明顯的。當(dāng)考慮嵌入到汽車的應(yīng)用模塊的壽命長(zhǎng)度時(shí),當(dāng)病人在工業(yè)環(huán)境下或醫(yī)學(xué)自我治療設(shè)備上的花費(fèi)是一個(gè)重要的考慮因素時(shí),這也是很有意義的。不過從數(shù)字到模擬的鴻溝縮小在單一芯片上時(shí)必定會(huì)有問題發(fā)生。例如,來自高蘭 州 理 工 大 學(xué) 畢 業(yè) 設(shè) 計(jì)速數(shù)字電路上時(shí)鐘的噪聲會(huì)干擾模擬功能的敏感區(qū)域。此外,高功率模擬功能的開關(guān)電流可干擾低壓數(shù)字處理器。我們的目標(biāo)是保護(hù)低壓晶體管電場(chǎng)效應(yīng)的電壓從 10 至高于 30 倍變化。這些重要的問題不是沒有解決方案的。例如,一個(gè) I3T 家庭使用的最新版本,I3T50 的貿(mào)工部,使用的是深溝槽隔離技術(shù)。這種技術(shù)采用了一系列深入到 IC 基板的隔離壕溝,有效地創(chuàng)建了片上的用于細(xì)致地控制噪聲和電源參數(shù)的“口袋” 。 深槽技術(shù)除具保護(hù)功能外,也有助于減少晶片面積,方法是應(yīng)用低壓地區(qū)的高電壓模擬口袋的密集包裝工藝??梢酝ㄟ^使用標(biāo)準(zhǔn)結(jié)隔離技術(shù)獲得超過預(yù)計(jì)的 10%至60%的使用面積。如前所述,系統(tǒng)設(shè)計(jì)師使用這些市場(chǎng)中的深亞微米技術(shù)的原因是常連接這些技術(shù)的設(shè)備的可用性,而不是應(yīng)用程序本身的復(fù)雜性。在許多情況下,由一個(gè) 8 位微控制器,或 32 位高端應(yīng)用程序可解決應(yīng)用程序本身的復(fù)雜性。作為 微米 I3T 的產(chǎn)品是能夠管理一個(gè)成本合理的集成環(huán)境的。如圖 所示為一個(gè)現(xiàn)實(shí)的混合信號(hào)片上系統(tǒng)的典型應(yīng)用框圖。 圖 混合信號(hào)片上系統(tǒng)的框圖基本上,該芯片通過一些數(shù)字化處理,集成了從傳感器到執(zhí)行機(jī)構(gòu)系統(tǒng)的功能。傳統(tǒng)的混合信號(hào)技術(shù)允許如放大器,模數(shù)轉(zhuǎn)換器(ADC)和過濾器等模擬控制和信號(hào)處理功能與如微控制器,存儲(chǔ)器,定時(shí)器和在一個(gè)單一的、定制的芯片上的邏輯控制功能等數(shù)字功能相結(jié)合,處理算法或數(shù)學(xué)計(jì)算的所有信號(hào)都是以數(shù)字方式進(jìn)行的,所以當(dāng)通過微控制器提交用于比較或處理的數(shù)據(jù)時(shí),所有信號(hào)的模擬向數(shù)字轉(zhuǎn)換都是強(qiáng)制性的。但是模擬高壓信號(hào)轉(zhuǎn)換成數(shù)字輸出信號(hào)時(shí)需要驅(qū)動(dòng)器或負(fù)載。最近期的混合信號(hào)技術(shù) AMIS 的發(fā)展,大大簡(jiǎn)化了這種驅(qū)動(dòng)功能的實(shí)施。該技術(shù)是通過允許更高電壓功能集成到具有要求相對(duì)較低電壓的傳統(tǒng)混合信號(hào)功能的一個(gè) IC 上。這種高壓混合信號(hào)技術(shù)與汽車電子應(yīng)用尤為相關(guān),該領(lǐng)域需要更高的輸出電壓,用于驅(qū)動(dòng)電機(jī)或繼電器,將模擬信號(hào)調(diào)節(jié)功能和復(fù)雜的數(shù)字處理結(jié)合起來。混合信號(hào)電路設(shè)計(jì)的發(fā)展趨勢(shì)是添加一些中央處理電路的類型到模擬電路。對(duì)于許多應(yīng)用程序,如 8051 或 6502 的 8 位微控制器核是智能處理器的合適選擇。 8 位仍蘭 州 理 工 大 學(xué) 畢 業(yè) 設(shè) 計(jì)然是最流行的選擇,因?yàn)槠舷到y(tǒng)的這種類型并不是要取代復(fù)雜的高端中央微處理器,而是將更多的權(quán)力下放或控制如在本地的(盡可能接近傳感器)傳感器調(diào)制電路的簡(jiǎn)單智能的應(yīng)用去控制繼電器或馬達(dá)。一個(gè)汽車的例子是當(dāng)轉(zhuǎn)動(dòng)方向盤以提高駕駛員的安全和改善視野時(shí),車的大燈會(huì)橫向發(fā)光。當(dāng)通過串行鏈路(在執(zhí)行 LIN 或 I2C 協(xié)議的大部分時(shí)間)時(shí),傳感器的輸入來自轉(zhuǎn)向角傳感器輸入,片上系統(tǒng)將與具有控制電機(jī)運(yùn)動(dòng)的一套板上算法相近。對(duì)于需要更多計(jì)算能力的高端應(yīng)用,轉(zhuǎn)移到 ARM 處理器是有可能的。這將創(chuàng)建一個(gè)高端的解決方案(最新的成熟市場(chǎng)) ,這方案持續(xù)時(shí)間將超出應(yīng)用程序的壽命,因?yàn)槲⒖刂破鲗⑹且粋€(gè)具有模擬模塊功能的集成電路的一小部分。為了了解多大的幾何區(qū)域能更適合一些混合信號(hào)應(yīng)用,人們需要了解其涉及的所有特征。下面我們將討論七個(gè)關(guān)鍵特征,然而,這絕對(duì)不是全面的。1.混合信號(hào)應(yīng)用器件的門和內(nèi)存大小影響成本。門和內(nèi)存大小影響成本是因?yàn)榇蠖鄶?shù)混合信號(hào)器件的內(nèi)核是被限制的。這與全數(shù)字電路是大不相同的。很多時(shí)候,全數(shù)字化的設(shè)備將有很多的輸入輸出設(shè)備,這些設(shè)備上的墊的數(shù)量決定了外圍數(shù)量,也因此決定了區(qū)域大小。這對(duì)混合信號(hào)設(shè)備來說是很少見的情況。對(duì)于數(shù)字單元塊中的大部分區(qū)域來說,能夠非常接近預(yù)期的節(jié)約面積。人們期望, 微米的單元能夠比具有等效功能的 微米單元小 51%。如下列公式所示:即使這歸數(shù)字單元持有,但我們看到的模擬單元將是一個(gè)完全不同的區(qū)域。因此,數(shù)字內(nèi)容(包括內(nèi)存)的數(shù)量對(duì)確定應(yīng)用程序的最好技術(shù)是很關(guān)鍵的。2.因?yàn)閹缀渭纳鴾p緩降低。這對(duì)數(shù)字和模擬設(shè)計(jì)師來說都是好消息。這轉(zhuǎn)化為高帶寬和高數(shù)據(jù)傳輸速率是可以理解的。雖然每門電路或互連電阻的寄生電容的大小在幾何跌幅里是最穩(wěn)較低的,但它也較難預(yù)測(cè)。這可能會(huì)導(dǎo)致模擬建模問題和加強(qiáng)對(duì)仔細(xì)了解寄生的需要。%)35.( ??比 例 大 小蘭 州 理 工 大 學(xué) 畢 業(yè) 設(shè) 計(jì)3.跨導(dǎo)的特點(diǎn)是跨柵極和源極之間的漏電流和電壓的關(guān)系。因?yàn)閹缀谓档投鐚?dǎo)越高。這對(duì)模擬和數(shù)字域都是好消息,在域里小電導(dǎo)與電容相互作用以創(chuàng)建更小的帶寬,因此也降低數(shù)據(jù)率。眾所周知,幾何降低也能降低設(shè)備的電壓限。在純數(shù)字的世界,有幾種有益的方式:降低功率和減少輻射。唯一的缺點(diǎn)是在大多數(shù)數(shù)字電路里需要多個(gè)電壓軌。在模擬域,積蓄力量是有,但操作范圍的減少使設(shè)計(jì)任務(wù)更加艱難。對(duì)模擬設(shè)計(jì)師來說,偏置電路在 VT + 2Von 和 Vdd(V T + 2Von)之間是相當(dāng)普遍的。不幸的是,閾值電壓VT 與幾何規(guī)模不匹配。換句話說,因?yàn)楣に嚋p縮使得電壓的操作范圍變小。這意味著電路的模擬部分必須更嚴(yán)格的控制,使其轉(zhuǎn)化為更大型、更匹配晶體管。4.因?yàn)楣に嚋p縮使通道電阻更低。雖然這聽起來像是一件好事,而且對(duì)于數(shù)字電路,在模擬域,它一般能將晶體管增益降低。但在電路中,低增益可能意味著多個(gè)階段。5.更小幾何尺寸的線性也成為模擬設(shè)計(jì)中的一個(gè)考慮因素。通常非線性問題都通過電路規(guī)模的增長(zhǎng)而解決的。從這樣的一個(gè)例子可以看出,對(duì)于 D / A 和 A / D 轉(zhuǎn)換器,其性能對(duì)電路的規(guī)模非常重要。6.對(duì)模擬設(shè)計(jì)者來說,以更小規(guī)模工藝實(shí)現(xiàn)電路而產(chǎn)生的噪聲能夠引發(fā)問題。通常由于產(chǎn)生更多噪音的大型和高速數(shù)字電路使情況更糟。較小的工作電壓范圍,對(duì)設(shè)計(jì)師也是挑戰(zhàn)。在模擬電路,由于信號(hào)電平降低,信噪比變得更糟,但噪音電平實(shí)際上可能上升。7.更小規(guī)模的模擬電路模型是有問題的。這在很大程度上是由于較低水平的可預(yù)測(cè)性和寄生的性質(zhì),也有些是由于技術(shù)的成熟引起的。這當(dāng)然隨著技術(shù)的發(fā)展而提高。蘭 州 理 工 大 學(xué) 畢 業(yè) 設(shè) 計(jì)因?yàn)樯厦媪谐龅倪@些項(xiàng)目對(duì)理解幾何過程縮小是很重要的,實(shí)際上,模擬規(guī)模變得更大,更難。這必須通過增加要使用的晶體管,電容器和電阻的大小來補(bǔ)償。移動(dòng)較小的